
Design optimization of piezoresistive cantilevers for force sensing
in air and water

Joseph C. Doll, Sung-Jin Park, and Beth L. Pruitta�

Department of Mechanical Engineering, Stanford University, Stanford, California 94305-4040, USA

�Received 6 May 2009; accepted 13 August 2009; published online 23 September 2009�

Piezoresistive cantilevers fabricated from doped silicon or metal films are commonly used for force,
topography, and chemical sensing at the micro- and macroscales. Proper design is required to
optimize the achievable resolution by maximizing sensitivity while simultaneously minimizing the
integrated noise over the bandwidth of interest. Existing analytical design methods are insufficient
for modeling complex dopant profiles, design constraints, and nonlinear phenomena such as
damping in fluid. Here we present an optimization method based on an analytical piezoresistive
cantilever model. We use an existing iterative optimizer to minimimize a performance goal, such as
minimum detectable force. The design tool is available as open source software. Optimal cantilever
design and performance are found to strongly depend on the measurement bandwidth and the
constraints applied. We discuss results for silicon piezoresistors fabricated by epitaxy and diffusion,
but the method can be applied to any dopant profile or material which can be modeled in a similar
fashion or extended to other microelectromechanical systems. © 2009 American Institute of
Physics. �doi:10.1063/1.3224965�

I. INTRODUCTION

Microfabricated silicon cantilevers are widely used in
force,1,2 topography,3 and biochemical sensing4 applications
by transducing a signal via cantilever deflection. There are
numerous techniques to detect cantilever bending, but the
most common approaches are off-chip optical sensing3 and
on-chip electronic sensing using piezoresistive strain
gauges.5,6 Electronic sensing scales well to large arrays,7

high frequencies,8 and situations where optics are
inconvenient.9 With proper design, the resolution of piezore-
sistive cantilevers is comparable to optical detection.5 How-
ever, the design methods used to date10 are often misapplied
in practice and are not readily generalizable to situations be-
yond epitaxial silicon piezoresistors in air.

Tradeoffs are a major part of piezoresistive cantilever
design. In optimizing force resolution, for example, the can-
tilever design parameters must be properly chosen to balance
the force sensitivity and noise sources of the cantilever given
a set of design and operating constraints. The duration and
time resolution of the measurement are particularly impor-
tant and determine the frequency range over which the can-
tilever must operate. Prior publications on the design of pi-
ezoresistive cantilevers have presented analytically derived
results for a single frequency range10 or performed local op-
timization on a single variable at a time.11 The results from
Ref. 10 were derived for a 1 µm thick epitaxial cantilever
operating in air from 10 Hz to 1 kHz. However, they have
been directly applied to other fabrication methods12 and mea-
surement bandwidths,13 but do not provide optimized perfor-
mance, in general.

Analytical approaches are difficult to apply to nonlinear
phenomena such as fluid damping which are more readily
modeled numerically. In contrast, multivariate design optimi-
zation has been shown to yield improved performance in
many applications, including piezoresistive microphones,14

and more effectively accounts for uncertainty.15 Although ep-
itaxial piezoresistors are straightforward to analyze, the dop-
ant profiles from other methods such as diffusion and ion
implantation are not as easily manipulated. In summary, ex-
isting design methodologies are not sufficient for cases such
as high bandwidth cantilevers operating in liquid, particu-
larly for doping methods other than epitaxy, and there is a
need for a more general method which can combine analyti-
cal and numerical modeling.

In this work we combine a primarily analytical model
for cantilever performance with an iterative optimizer to in-
vestigate the influence of design variables and constraints on
cantilever performance. We particularly emphasize high fre-
quency force detection in air and liquid environments. Re-
sults are primarily discussed for epitaxial piezoresistors, but
we also extended the code to diffusion to demonstrate its
flexibility. Additionally, we emphasize single crystal silicon
piezoresistors but it is possible to apply the code to polysili-
con or metal piezoresistors as well. We have made the design
and optimization code freely available as an open source
project and designed it to be useful in practice for other
researchers. The design approach we describe is general and
can easily be applied to other loading conditions,4 sensor
geometries,16 and transduction methods.17,18

II. METHOD

The cantilever geometry used in this work is shown in
Fig. 1. The cantilever is of a split-leg design; two separate
legs each of length lpr and width w /2 form a loop to define
the piezoresistor. The cantilever extends beyond the end of
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the piezoresistor to a total length l. The thickness t is uniform
along the length. The gap between the legs is assumed to be
negligibly wide, and the cantilever can be approximated to
have a uniform width w. This design is straightforward to
analyze and fabricate using epitaxy, diffusion, or ion implan-
tation. It is worth emphasizing that the piezoresistor should
occupy the entire width of the cantilever, as assumed
throughout this analysis. As the piezoresistor becomes nar-
rower than the cantilever, both the Johnson noise and Hooge
noise increase while the sensitivity remains constant.

A. Force sensitivity

The system is modeled as a linear elastic cantilever
beam with a point load applied at the tip via Euler–Bernoulli
beam theory. We assume negligible transverse stress in the
cantilever legs, and the longitudinal stress induced as a func-
tion of distance x from the base and z from the neutral axis of
the cantilever is

� =
12F�l − x�z

wt3 . �1�

The longitudinal stress induced by a point load is zero at
the neutral axis and varies linearly through the cantilever
thickness, thus the stress experienced by the piezoresistor
varies by position. Stress is independent of the cantilever

mechanical properties and is solely dependent on geometry,
which is a consideration for the choice of dopant type and
will be discussed later.

If the cantilever length is comparable to its width, trans-
verse stress starts to become significant and must be consid-
ered in the design. The transverse stress affects both the pi-
ezoresistor sensitivity and the beam mechanics. The effect on
sensitivity can be incorporated through simulation,19 while
the beam mechanics can be modified by using the adjusted
plate modulus to calculate the beam stiffness, E / �1−�2�,
where E is the elastic modulus and � is Poisson’s ratio of the
beam material.20

The stress field is transduced by the piezoresistive effect
as a change in resistivity, according to

��

�
= �l�l + �t�t, �2�

where �l and �t are the longitudinal and transverse piezore-
sistive coefficients, while �l and �t are the longitudinal and
transverse stress components where the piezoresistor is situ-
ated. The piezoresistive effect is assumed to be linear, which
is accurate to 0.1% and 1% for stresses of 15.3 and 139 MPa
of stress.21 This corresponds to less than 0.1% nonlinearity
for a dynamic range of 40 dB for the designs discussed later
in Table I.

The piezoresistance factor is assumed to be independent
of temperature because the dopant concentrations utilized
here are fairly high.22 However, the piezoresistance factor
could be coupled to temperature based on experimental
data23 for both sensitivity and noise analysis. Although this

FIG. 1. �Color online� �a� Cantilever schematic. The cantilever has a total
length l, width w, and thickness t. The piezoresistor loop is formed by the
two legs, each of width w /2, separated by a negligible gap. The piezoresis-
tor is oriented in the �110� or �100� for a p-type or n-type piezoresistor,
respectively, in order to maximize sensitivity. �b� The change in resistance
of the piezoresistor with applied force is read out with a Wheatstone bridge.
Two piezoresistors are included in the bridge for reduced sensitivity to tem-
perature change and other disturbances. �c� The piezoresistor can be formed
using numerous methods which yield an electrically active dopant concen-
tration which varies with depth. �d� Noise PSD of the piezoresistor is com-
posed of 1 / f �Hooge� noise and Johnson noise. The choice of cantilever
design determines the corner frequency at which piezoresistor noise transi-
tions from 1 / f dominated to Johnson noise dominated.

TABLE I. Optimized p-type epitaxial piezoresistive cantilever designs. The
values for fmin and fmax are provided to the optimizer, while constraints are
placed on t ��1 µm or �10 µm�, n ��4.4�1019�, f0 ��5fmax�, Vbridge ��10
V�, and W ��2.5 mW�. The other parameters are calculated by the optimi-
zation routine.

Cantilever 1 2 3 4
Ambient Vacuum Vacuum Vacuum Water
fmin �Hz� 1 1 1 1
fmax �kHz� 1 1 100 100

l �µm� 1658 524 52.4 40.8
w �µm� 20 2 2 2
t �µm� 10 1 1 1
lpr / l 0.25 0.29 0.40 0.43
tpr / t 0.11 0.33 0.19 0.20
n �cm−3� 6.0�1018 4.4�1019 4.4�1019 4.4�1019

Fmin �pN� 202 2.6 123 169
SF �V/N� 2.3�103 4.1�105 3.5�104 2.4�104

	* 0.61 0.34 0.41 0.41
Vnoise �V� 4.6�10−7 1.1�10−6 4.4�10−6 4.0�10−6

VH /VJ 0.61 1.42 0.99 1.07
fcorner �kHz� 0.05 0.29 8.5 9.8
N 5.6�1010 4.4�109 3.5�108 3.1�108

k �N/m� 0.19 5.9�10−4 0.59 1.24
f0 �kHz� 5 5 500 825
f fluid �kHz� 2.9 0.7 286 500
Vbridge �V� 9.6 10 7.6 6.7
R �k
� 9.2 23.4 5.7 4.5
W �mW� 2.5 1.1 2.5 2.5
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extension would be difficult analytically, it is straightforward
with the numerical approach used here. The piezoresistive
coefficient for boron doped piezoresistors is taken from Har-
ley’s fit of experimental data,24

�l = P�0, �3�

where �0=72�10−11 Pa−1 for p-type piezoresistors oriented
in the �110� direction and

P = log10�b

n
a� , �4�

where a=0.2014, b=1.53�1022 cm−3, and n is the dopant
concentration. If the piezoresistor is uniformly doped, infi-
nitely thin, and located at the surface of the cantilever where
the stress is maximized, the fractional change in resistance
is25

�R

R
=

6�l�l − lpr/2�
wt2 F , �5�

where l, w, and t are the cantilever dimensions and lpr is the
length of the piezoresistor as noted earlier. In practice, these
assumptions overpredict cantilever sensitivity due to the fi-
nite thickness of the piezoresistor �Fig. 1�c��. Therefore, we
introduce an efficiency factor 	* as in Ref. 26, which ac-
counts for the finite thickness of the piezoresistor and pro-
portionally reduces the fractional change in resistance,

	* =
2

t

	−t/2
t/2 q�nPzdz

	−t/2
t/2 q�ndz

, �6�

where the majority carrier mobility µ and piezoresistive co-
efficient P are both functions of dopant concentration n,
which varies with depth z. In the case of a uniformly doped
piezoresistor with finite thickness tpr, 	* simplifies to

	* = P�1 −
tpr

t
� . �7�

A simplified form was first derived in Ref. 5 before be-
ing extended to a dopant profile with varying concentration
in Ref. 26. A Wheatstone bridge is commonly used to trans-
duce the change in resistance to a voltage. Although a bridge
reduces the sensitivity of the system �Vout /Vbridge
�R /4R�,
it is straightforward to implement. For all sensitivity and
noise calculations, we assume a quarter-active Wheatstone
bridge with an additional temperature compensation piezore-
sistor as shown in Fig. 1�b�. The overall voltage sensitivity is
given as

SF =
�V

F
=

3�0�l − lpr/2�
2wt2 Vbridge	*� , �8�

where � is the ratio of the piezoresistor resistance to the total
resistance measured. Resistance that does not contribute to
the change in resistance with applied force, such as contact
resistance and conducting traces, acts to reduce system sen-
sitivity and increase noise, both by the increased resistance
and regions of high current density which contribute to 1 / f
noise. We assume �  1 for simplicity.

The piezoresistive coefficient varies according to the
dopant type and the crystallographic orientation of the cur-

rent flow relative to the applied stress. For a p-type dopant,
the direction of maximum piezoresistive coefficient is the
�110� direction, while for n-type dopants the optimum direc-
tion of stress and current is the �100� direction.

The flow of current transverse to the longitudinal stress
at the end of the piezoresistor results in a reduction in sen-
sitivity because �T
−�L for p-type piezoresistors in the
�110� direction. Generally the piezoresistor is much longer
than it is wide and the turn at the end of the piezoresistor is
insignificant.25 The contribution of the transverse current can
be calculated as

��RT

�RL
� 


w�1

a
− 1�

l�1 −
a

2
� , �9�

where a= lpr / l. The effect is generally small �for w / l=1 /50
and a=0.3, ��RT /�RL�=5%� and we neglect it in the present
analysis.

As a sensitivity analysis example, consider cantilever 1
in Table I. The cantilever is 10 µm thick, 20 µm wide, and
1658 µm long, with a piezoresistor that is 1.1 µm thick and
415 µm long and doped to 6�1018 cm−3. The efficiency fac-
tor and sensitivity can be calculated from Eqs. �7� and �8� to
be 	*=0.61 and SF=2287 V /N.

B. Noise

Piezoresistive cantilever performance is limited by three
primary sources of noise: Johnson, 1 / f and amplifier. Ther-
momechanical noise27,28 and fluid damping noise29 are not
included in the present analysis but should be considered in
certain applications, such as those requiring subpiconewton
force resolution.30 These other noise sources will be briefly
discussed at the end of this section.

1. Johnson noise

Johnson noise is the result of the thermal motion of car-
riers within resistive elements and is independent of
frequency31 �Fig. 1�d��. The “white noise” is dependent on
the resistance R and temperature T of the resistor, and the
noise power spectral density �V2 /Hz� for a single resistor is

SJ
2 = 4kbTR , �10�

where kb is Boltzmann’s constant. The Johnson noise of a
balanced Wheatstone bridge is equal to the Johnson noise of
a single resistor, so that the overall Johnson noise power of
the Wheatstone bridge in the frequency band fmin to fmax is

VJ
2 = 4kbTR�fmax − fmin� . �11�

The resistance of an epitaxial piezoresistor can be approxi-
mated as

R = �
4lpr

wtpr
, �12�

where � is the resistivity of the piezoresistor. Resistivity var-
ies according to dopant concentration n as
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� =
1

q�n
, �13�

where µ is the concentration dependent majority carrier
mobility.32

Once again using cantilever 1 in Table I as an example,
the resistance is calculated from Eqs. �12� and �13� �R
=9.2 k
�. Combining the resistance with fmin �1 Hz� and
fmax �1 kHz�, the integrated Johnson noise power �Eq. �11��
is 1.52�10−13 V2, or equivalently, the rms Johnson noise
voltage is 3.9�10−7 V.

2. Hooge noise

The dominant 1 / f noise source in silicon piezoresistors
is Hooge noise.10 Hooge noise is a fluctuation in resistor
conductance which can be attributed to defects in the bulk of
the material.33 In contrast with Johnson noise, which is a
voltage noise, Hooge noise is a conductivity noise and the
noise voltage depends on the bias voltage. The noise is inde-
pendent of the resistance and is inversely proportional to the
number of carriers in the resistor. The voltage power spectral
density of a single piezoresistor has been empirically mod-
eled as

SH
2 =

�Vbias
2

Nf
, �14�

where Vbias=Vbridge /2 is the piezoresistor bias voltage, N is
the total number of carriers in the resistor, and f is the fre-
quency �Fig. 1�d��. The parameter � is an experimentally
measured value that is dependent on the crystal lattice qual-
ity. Ion implantation causes damage to the crystal that must
be annealed out, and it has been observed that � decreases
with the mean diffusion length �Dt� of the dopant atoms
during the anneal. For epitaxial piezoresistors, �=10−5 is
typical24 and we use this value in the presented analysis.
However, values of � as low as 10−7 have been reported for
implanted piezoresistors34 and specific fabrication processes
�e.g., reactive ion etching� have been shown to affect the 1 / f
noise performance of piezoresistors.35

The Wheatstone bridge is composed of two piezoresis-
tors which are uncorrelated 1 / f noise sources so the 1 / f
noise power is increased by a factor of 2 �voltage increased
by 2�, and the integrated voltage noise power is

VH
2 =

�Vbridge
2

2N
ln� fmax

fmin
� . �15�

1 / f noise is dependent on frequency and its integrated
power is constant per decade. The number of carriers can be
calculated from the dopant concentration profile and piezore-
sistor volume assuming a constant current density,24 and for
an epitaxial piezoresistor is

N = nlprwtpr. �16�

Using cantilever 1 in Table I as an example, the number
of carriers can be calculated from Eq. �16� to be N=5.6
�1010. Using N, Vbridge �9.6 V�, fmin, and fmax, we can cal-
culate the Hooge noise power �Eq. �15�� to be 5.8

�10−14 V2, or a noise voltage of 2.4�10−7 V. Note that this
is slightly less than the Johnson noise power.

3. Amplifier noise

The typical measurement circuit for a piezoresistive sen-
sor includes a Wheatstone bridge, instrumentation amplifier,
and electronic filters �Fig. 1�b��. With proper choice of
bridge resistors and filters, only the instrumentation amplifier
noise need be considered. Specifically, the additional resis-
tors in the Wheatstone bridge should have low 1 / f noise and
be less than or equal in resistance to the piezoresistors. The
electromagnetic shielding and the noise characteristics of the
other electronic components in the circuit must also be con-
sidered. We select a low noise instrumentation amplifier
�INA103, Texas Instruments� with sufficient bandwidth for
high frequency force sensing ��3 dB bandwidth of 800 kHz,
G=100�, and an input referred voltage noise of approxi-
mately

VA
2 = CJ

2�fmax − fmin� + CH
2 ln� fmax

fmin
� , �17�

where CJ=1.8 nV /Hz and CH=10 nV with a gain of 100.
In a measurement bandwidth from 1 Hz to 1 kHz, this

translates to a noise power of 4�10−15 V2 or a rms noise
voltage of 6.3�10−8 V. This is four to six times less than the
Johnson and Hooge noise sources, although the relative mag-
nitude of the noise sources depends on the cantilever design
and optimization constraints which will be discussed later.

4. Other noise sources

As noted previously, thermomechanical and fluid damp-
ing noise can be significant for certain applications. For the
optimization design space explored in this paper they are not
significant, but we will briefly discuss them here. Whereas
thermomechanical noise is intrinsic to the cantilever and is
caused by the Brownian motion of the silicon atoms, fluid
damping noise is caused by the Brownian motion of the im-
mersing fluid. The thermomechanical noise force can be cal-
culated from

Fth =2kkbT�fmax − fmin�
�f0Q

, �18�

where k and Q are the spring constant and mechanical qual-
ity factor of the cantilever, respectively. For the example
cantilever design followed through the previous sections
�cantilever 1 in Table I� and conservatively assuming Q
=100, this translates to a force of 1 pN.

The fluid damping noise force can be calculated from the
equipartition theorem by equating the thermal energy of the
fluid molecules with the elastic bending energy of the canti-
lever,

Fd = kbkT . �19�

For the example cantilever this corresponds for a noise
force contribution of 0.3 pN.

Both noise sources are significantly less than that of the
electronic noise sources for most microscale cantilever de-
signs. In comparison with the electronic noise limited force
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resolution of the example cantilever �202 pN, discussed in
Sec. II C�, thermomechanical and fluid damping noise are
insignificant.

C. Force resolution

The overall root mean square voltage noise is the sum of
the uncorrelated noise sources described in the previous sec-
tions,

Vnoise = VJ
2 + VH

2 + VA
2 . �20�

The ratio of VJ to VH depends on the cantilever design
and the measurement frequency range. For a cantilever opti-
mized for broadband force sensing, we show in Sec. III B
that VJ
VH.

The minimum resolvable force can be calculated from
the integrated voltage noise and the force sensitivity of the
device according to

Fmin =
Vnoise

SF
. �21�

The goal of the designer is to minimize Fmin by optimiz-
ing the ratio of Vnoise to SF, which can be calculated from the
cantilever design parameters. The components of this model
are well established,2,10 but we verified the accuracy of the
model by comparing it with the experimental data presented
in Ref. 24 for a 90 nm thick epitaxial piezoresistor. The force
resolution, integrated noise, and stiffness all agree to within
10% of the reported values, e.g., a force resolution of 0.5 pN
is reported and we calculate a value of 0.56 pN.

Again considering cantilever 1 in Table I, we can calcu-
late the total noise magnitude from Equation �20� �Vnoise

=4.6�10−7�. Combining the force sensitivity and Eq. �21�,
we calculate a force resolution of 202 pN.

D. Bandwidth

The measurement bandwidth of a cantilever is limited by
its mechanical resonance. The frequency components of a
force signal near the resonant modes of the cantilever are
amplified, which can be beneficial in the case of resonant
mode detection or must be avoided in closed loop force con-
trol applications. A flat frequency response is beneficial for
passive force sensing, where it reduces calibration to a single
sensitivity value rather than a frequency dependent one, and
for force feedback applications, where the resonant modes
must be compensated to preserve stability. The first resonant
mode of a cantilever can be derived from the Euler–
Bernoulli beam equation as20

f0 =
1

2�
 k

meff



1

�
 E

�c

t

L2 . �22�

where �c is the density of the cantilever beam. Additionally,
it is important that the cantilever is stiffer in the transverse
in-plane direction than the out-of-plane direction, or equiva-
lently, that the first out-of-plane resonant mode is at a lower
frequency than the first transverse in-plane mode.

The frequency response of the cantilever in fluid is mod-
eled based on Van Eysden and Sader.36 Classical beam

theory is combined with solution of the linearized Navier–
Stokes equations to predict the frequency response of a can-
tilever for arbitrary mode order. Assumptions of the model
include a rectangular, uniform cross section, and l�w� t. In
the case of small dissipative effects �Q�1� or the Stokes
limit �Reynold’s number → 0�, the resonant frequency in
fluid f fluid and quality factor �Q� of the first flexural mode can
be calculated from

f fluid = f0�1 +
�� fw

4�ct
�real�Re,���−0.5

, �23�

Q =

4�ct

�� fw
+ �real�Re,��

�imag�Re,��
, �24�

where � f is the fluid density and the complex number � is the
normalized hydrodynamic force, also referred to as the hy-
drodynamic function. The hydrodynamic force affects the
dynamics of the cantilever by both the added mass and
damping of the fluid. A lookup table for � is provided in Ref.
36 in terms of the normalized Reynold’s number, Re
=2�f� fw

2 /�, where f is the frequency, and the normalized
mode number, �=Cnw / l, where Cn is the nth positive root of
1+cos�Cn�cosh�Cn�=0 �Cn=1.875 for n=1�. Reynold’s
number can vary over several orders of magnitude depending
on the cantilever dimensions while � � 1 based on our as-
sumption of l�w. The model is most accurate for narrow,
thin cantilevers when Re�1. The hydrodynamic function
lookup table from Ref. 36 is plotted in Fig. 2 for flexural
cantilever bending.

The frequency response depends on cantilever dimen-
sions and the fluid environment �Fig. 3�. The ideal value of
fmax relative to f0 will depend on the application. If we con-
sider a force sensor intended for feedback control, the canti-
lever frequency response up to fmax should be relatively flat.
In order to simplify the analysis here, we conservatively
maintain f0�5fmax.

E. Power dissipation

For a constant bias voltage across the Wheatstone
bridge, Vbridge, half of the potential drop occurs across each
resistor �Fig. 1� and the electrical power dissipated in each
resistor is

W =
�Vbridge/2�2

R
=

Vbridge
2

4R
. �25�

The heat is dissipated via convection to the immersing
fluid directly from the cantilever and via conduction through
the bulk of the silicon device. Excessive power dissipation
will increase the temperature of the piezoresistor, leading to
a reduced piezoresistive coefficient, increased thermal noise,
and potential damage to sensitive samples. For certain appli-
cations �e.g., biological force probes�, the temperature of the
cantilever tip should be only a few degrees above ambient,
whereas for other applications �e.g., scanning probe micros-
copy�, the temperature might be limited by other effects such
as delamination of the silicon device from the experimental
fixture. The relationship between temperature rise and power
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dissipation depends on the cantilever design, but the tem-
perature can be � 100 °C for power dissipations as low as 5
mW.19 To simplify the analysis we apply a power dissipation
constraint rather than a temperature constraint, although a
simple thermal model could be integrated into the design
process in the future.

F. Iterative optimization

As described in the previous sections, cantilever force
resolution can be approximated from a set of design param-
eters which determine the cantilever dimensions, piezoresis-
tor dimensions, dopant profile, and bias voltage. For a typical
force sensing application the time resolution and measure-
ment duration are known which determines fmin and fmax,
and the goal is to optimize the force resolution given fabri-
cation and experimental constraints.

Prior analyses of cantilever design have focused on op-
timizing one or two design parameters at a time with respect
to fixed values of the other parameters.13,37 However, due to
the degree of parameter coupling, this approach does not
typically find the global optimum.

We implemented an iterative optimization scheme in
MATLAB �Mathworks, Cambridge, MA� using fmincon, a
gradient based nonlinear optimization algorithm implement-

ing nonlinear constraints. The solution is found iteratively
using the L-BFGS-B method,38 a quasi-Newtonian optimiza-
tion method; the goal function �e.g., force resolution� is com-
puted for the current design parameters, the parameter
change which most rapidly minimizes the goal function is
found, and the design parameters are updated before repeat-
ing the cycle until the solution converges. Calculation time
depends on the computer hardware and model complexity,
but takes less than a minute on the hardware that we have
tested.

The piezoresistive cantilever design problem is not con-
vex, which we verified by calculating the Hessian matrix for
the force resolution. Thus, the local optimum found by the
optimizer is not guaranteed to be the global optimum. We
investigated the convergence of the optimizer by finding the
local optimum for a large number ��105� of initial randomly
generated starting points and found that the global optimum
is found more than 99% of the time. This suggests that the
global optimum is found in practice �Fig. 4�, and the high
probability of success means that we are virtually guaranteed
to find the global optimum by repeating the optimization
routine several times with random starting conditions.

For most calculations we chose to use boron as the dop-
ant atom and the cantilever is accordingly oriented in the
�110� direction, which determines the piezoresistive coeffi-
cient and elastic modulus. The following constraints were
also applied unless otherwise noted in the text:

• fmin=1 Hz,
• W�2.5 mW,
• f0�5fmax,
• Vbridge�10 V,
• n�4.4�1019 cm−3,
• t�1 �m,
• w�2t.

Several of the constraints �fmin,W ,n , t� were chosen to
closely match previous design optimization work presented

FIG. 3. �Color online� Frequency response in water for 50 µm long, 1 µm
thick cantilevers of varying width. The response is approximated by a sec-
ond order mechanical system with calculated damped natural frequencies of
318, 270, and 226 kHz and quality factors of 1.7, 2.7, and 3.8. A critically
damped system �Q=2� is desirable for broadband force sensing to maxi-
mize the available flat sensitivity bandwidth and maintain stability in closed-
loop systems.

FIG. 2. �Color online� Cantilever hydrodynamic function after the tabulated
lookup table in Van Eysden and Sader �Ref. 36�. The �a� real ��real� and �b�
imaginary ��imag� parts are plotted with constant � contour lines for flexural
cantilever bending modes. The resonant frequency and quality factor are
calculated from � during design optimization for fluid operation
applications.
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in Ref. 10. The maximum dopant concentration is based on
the solid solubility limit of boron in silicon at 800 °C from
Refs. 39 and 40, which are used in modeling packages such
as TSUPREM4 �Synopsys, Mountain View, CA�. The con-
straint on f0 / fmax was chosen to maintain a flat frequency
response up to fmax. The maximum bias voltage was chosen
to represent the range of voltages achievable with widely
available laboratory power supplies. The ratio of w / t was
chosen to ensure that the cantilever is significantly stiffer in
plane than out of plane. No constraints were placed upon
cantilever stiffness or piezoresistor dimensions, although cer-
tain applications may require them.

III. RESULTS AND DISCUSSION

Using the iterative optimization approach presented in
Sec. II, we investigated the impact of design choices on can-
tilever performance.

A. Measurement bandwidth

An increase in measurement bandwidth fmax has two ef-
fects on force resolution. First, the resonant frequency of the
cantilever must increase so the beam will become shorter
and/or thicker, reducing its force sensitivity. Second, the in-
tegrated noise increases with fmax. Thus, the minimum de-
tectable force increases with measurement bandwidth �Fig.
5�a��.

The optimal piezoresistor design �lpr / l , tpr / t� varies con-
tinuously with the measurement bandwidth and the con-
straints applied �Fig. 5�b��. For the particular constraints
used here, tpr / t is initially 1 /3 at low frequency. As fmax

increases it is beneficial to reduce the resistance �VJ�, which
increases the dissipated power. Once the power dissipation
constraint is reached �Fig. 5�c��, tpr / t decreases while lpr / l
increases. At high frequency, another discontinuity is en-
countered when the optimal bias voltage decreases below the
voltage constraint applied. A ratio of tpr / t=1 /3 was derived
by Harley10 for the case of an epitaxial piezoresistor with no

constraints on power dissipation or bias voltage, which we
clearly observe, however, power dissipation and voltage con-
straints significantly change the optimal design. Several de-
signs are described in more detail in Table I. The optimal
dopant concentration and junction depth are based on a
tradeoff between sensitivity and noise subject to the set of
constraints applied, particularly power dissipation. As the

FIG. 4. �Color online� Force resolution improves as the optimizer iterates.
At each iteration, the Hessian of the system is numerically approximated
and the state variables are updated to move in the direction of steepest
descent for the optimization goal. If the constraints are no longer satisfied
after a step, the force resolution may increase as the optimizer attempts to
satisfy the constraints again.

FIG. 5. �Color online� �a� Force resolution, �b� piezoresistor length and
thickness ratios, and �c� power dissipation and bias voltage. Results are
plotted for optimal designs generated with fmin=1 Hz and fmax between 1
and 100 kHz. The cantilever width and thickness are at their lower bound �1
and 2 µm� for all conditions. As fmax increases, the cantilever decreases in
length in order to maintain f0�5fmax, reducing sensitivity. The piezoresistor
becomes thinner and longer relative to the length of the beam, although it
becomes shorter in absolute terms due to the shortening of the entire canti-
lever. For low frequency operation the cantilever is bias voltage constrained
�Vbridge=Vbridge,max and W�Wmax�, while at high frequency the cantilever is
power dissipation constrained �W=Wmax and Vbridge�Vbridge,max�. The kinks
in �b� correspond to the power and voltage limits shown in �c�.
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cantilever thickness increases, a thinner, lower concentration
piezoresistor is favored �compare cantilevers 1 and 2 in Table
I�.

B. Balancing the noise

Prior publications have noted that Hooge noise domi-
nates at low frequencies and Johnson noise at high frequen-
cies. However, the contribution of each is dependent on the
1 / f corner frequency relative to fmin and fmax, and the corner
can be designed as low as 1 Hz or higher than 10 kHz �Ref.
34� by adjusting the number of carriers �N� in the resistor
and its resistance �R�.

Our results show that the force resolution is optimized
when the integrated Hooge voltage noise is comparable to
the integrated Johnson voltage noise �VJ
VH� as seen in
Fig. 6�a�. This result stems from the fact that the Johnson and
Hooge noise sources are uncorrelated and the magnitude of
the noise is the vector sum of the independent sources. An
improvement in force sensitivity is accompanied by an in-
crease in noise; for example, increasing S by reducing tpr and
increasing lpr maintains constant N �VH� but increases R �VJ�.
Thus the change in sensitivity with respect to total noise is
maximized when each component of the noise vector is ap-
proximately equal. Another interpretation of matching VJ and

VH is that at frequencies where one is dominant the other is
negligible. In other words, below the 1 / f corner frequency
there is effectively no Johnson noise and above it there is no
1 / f noise. The total system noise is minimized when it is
distributed equally between the two �Fig. 6�b��. The optimal
noise ratio �VH /VJ� varies depending on the operating con-
straints applied, particularly power consumption, and is ana-
lytically investigated in Ref. 26. In previous work, it has not
been uncommon to operate the cantilever with a noise ratio
of 100:1 or greater13 which leads to suboptimal performance.

The practical significance of this is that the optimal can-
tilever design is noisier than expected, making characteriza-
tion and signal conditioning significantly faster and easier. To
characterize the 1 / f noise properties of a piezoresistor fabri-
cation process it is necessary to measure the noise spectrum
and extract �. Measurement time is inversely proportional to
the lower bound of the measurement frequency range, so a
high corner frequency �e.g., �1 kHz� enables rapid charac-
terization. Additionally, in cases where the 1 / f noise of the
piezoresistor is less than that of the instrumentation amplifier
it is necessary to use an ac modulation technique.34 Based on
our results, the optimal piezoresistor design has greater 1 / f
noise than the instrumentation amplifier for many applica-
tions and the measurement electronics can use a simple dc
bias configuration. We optimized cantilevers for several
commercial instrumentation amplifiers to explore the effect
of system noise on cantilever design �Table II�. As the am-
plifier noise increases, the optimal piezoresistor becomes

FIG. 6. �Color online� �a� The ratio of Johnson noise to Hooge noise varies
fmax and the operating constraints but remains on the order of unity in order
to maximize the benefit of the two noise sources being uncorrelated. �b� The
noise power spectral densities for the three optimized cantilever designs for
fmax equal to 1, 10, and 100 kHz. The amplifier noise is an order of magni-
tude less than the piezoresistor noise at all frequencies.

TABLE II. Optimized p-type epitaxial piezoresistive cantilevers for several
choices of instrumentation amplifier. Optimization was performed for opera-
tion from 1 Hz to 50 kHz with a minimum thickness of 1 µmW, and maxi-
mum bias voltage of 10 V. Three amplifiers were considered: TI INA103,
AD622, and AD623. The amplifiers were chosen to represent several price
points and noise levels. Although the integrated noise of the AD622 and
AD623 are 3 times and 17 times greater than that of the INA103, the mini-
mum detectable force only increases by 10% and 70%, respectively. As the
instrumentation amplifier noise increases, the piezoresistor is made shorter
and thinner, which increases the sensitivity, while the increased 1 / f noise
due to the reduction in N negligibly affects the overall noise while it is less
than the amplifier noise.

Cantilever 1 2 3
Amplifier INA103 AD622 AD623
fmin �Hz� 1 1 1
fmax �kHz� 50 50 50

l �µm� 74 74 74
w �µm� 2 2 2
t �µm� 1 1 1
lpr / l 0.33 0.31 0.21
tpr / t 0.25 0.23 0.16
n �cm−3� 4.4�1019 4.4�1019 4.4�1019

Fmin �pN� 134 147 230
SF �V/N� 3.2�104 3.3�104 3.8�104

	* 0.38 0.39 0.43
Vnoise �V� 4.3�10−6 4.9�10−6 8.8�10−6

VJ 2.9�10−6 2.9�10−6 2.9�10−6

VH 3.1�10−6 3.4�10−6 4.9�10−6

VA 4.0�10−7 2.0�10−6 6.7�10−6

fcorner �kHz� 5.5 6.5 13.5
N 5.5�108 4.7�108 2.2�108
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shorter and thinner, which increases the sensitivity. The in-
creased 1 / f noise due to the smaller number of carriers is
negligible compared to the amplifier noise, so the force res-
olution is improved.

C. Effect of constraints

The design and operation constraints of the cantilever
have a significant effect on force resolution �Fig. 7�a��. Cer-
tain constraints, such as thickness, have a continuous effect
upon device performance; a thinner cantilever will always
perform better than a thicker one for an epitaxial piezoresis-
tor �although not necessarily for an ion implanted piezoresis-
tor�. However, other constraints such as the upper dopant
concentration limit �Fig. 7�b��, power dissipation limit �Fig.
7�c��, and bias voltage limit �Fig. 7�d�� only improve perfor-
mance up to a threshold value. This threshold behavior is due
to coupling between the constraints; for example, if a canti-
lever is already dissipating the maximum allowable power,
then increasing the voltage is unlikely to be beneficial. The
threshold constraint value depends on the measurement
bandwidth as well, as seen in Fig. 7�c� where the 1 kHz
cantilever achieves optimal performance at a lower power

dissipation than the 100 kHz cantilever because of the in-
creased importance of Johnson noise for high frequency op-
eration.

In Fig. 7�d�, cantilever performance is optimized with
regards to bias voltage for two cases: an upper limit and a
fixed value. When the bias voltage is directly fixed, perfor-
mance suffers as the voltage is increased above the optimal
value. When the bias voltage is indirectly set by using a
constraint, ideal performance is achieved even when a
greater bias voltage is possible. A benefit of the iterative,
computated optimization method is that constraints are uti-
lized rather than fixed parameter values, leading to improved
performance and a more robust, user-friendly design process.

D. Operation in water

Operating a cantilever in liquid rather than air reduces
the resonant frequency and quality factor. For control stabil-
ity, a lower quality factor can be desirable, but the cantilever
must be made shorter in order to maintain the same first
resonant mode frequency. A comparison of water and air
performance is presented in Fig. 8. Performance is reduced
slightly in water, particularly as cantilever width is increased.

FIG. 7. �Color online� The effect of design constraints on epitaxial piezoresistor force resolution. For all plots, fmin=1 Hz while fmax is 1, 10, or 100 kHz. �a�
Thickness affects force resolution in a straightforward manner and a thinner device is always desirable. �b� The constraint on maximum dopant concentration
shows a threshold concentration above which performance is not improved. The concentration threshold is inversely proportional to fmax. �c� Force resolution
also improves with power dissipation up to a thresold value, above which performance is limited by other constraints �e.g., bias voltage�. �d� Although
performance improves as the bias voltage constraint is increased �solid line�, when the design is forced to have a particular bias voltage �dashed line�
performance actually decreases. Thus, applying constraints rather than forcing the cantilever parameters to particular values leads to a more robust design
process.
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E. Choice of dopant type and concentration

Dopant concentration affects the piezoresistive coeffi-
cient, sensitivity to temperature fluctuations, number of car-
riers, and resistance, thus affecting both sensitivity and noise.
Increasing the number of carriers with fixed resistor dimen-
sions decreases both Johnson and Hooge noise by decreasing
R and increasing N. However, it also leads to a reduction in
the piezoresistive coefficient and increases the power con-
sumption for a fixed bias voltage. For thin cantilevers �e.g., 1
µm thick�, performance is optimized when the dopant con-
centration is made as large as possible, constrained by the
solid solubility limit of the dopant atom. However, the opti-
mal dopant concentration decreases in a number of cases,
such as when cantilever thickness is increased �Table I�.

Although the piezoresistive coefficient for n-type silicon
in the �100� direction �103�10−11 Pa−1� is higher than
p-type silicon in the �110� direction �72�10−11 Pa−1� at low
concentrations,22 the elastic modulus of silicon in the �100�
direction is 130 GPa, as compared to 169 GPa in the �110�
direction. As noted earlier, sensitivity is independent of elas-
tic modulus, whereas natural frequency is not. Thus, for a
fixed natural frequency a n-type cantilever must be shorter
and/or thicker than an equivalent p-type cantilever to com-
pensate for its lower modulus, resulting in a modest perfor-
mance advantage of 10% for a fixed dopant concentration.

However, there are several potential benefits to choosing
a n-type rather than a p-type piezoresistor. First, the solid
solubility limit of phosphorus is approximately an order of
magnitude larger than that of boron at typical processing
temperatures.39,40 This leads to a � 10% performance advan-
tage for n-type piezoresistors when a high dopant concentra-
tion is favored �Table III�. Second, the increased thickness of
a n-type cantilever to maintain a fixed natural frequency is
beneficial during fabrication. Finally, arsenic has a signifi-
cantly lower diffusivity in silicon than boron or phosphorus
and enables the formation of a shallow piezoresistor with
enough postanneal time to minimize �, as discussed in Ref.
1. Historically, p-type piezoresistors may have been domi-

nant because they are straight forward to release using aniso-
tropic wet etches �e.g., KOH and TMAH�, but the current
wide availability of deep reactive ion etching and silicon-on-
insulator wafers makes both p-type and n-type cantilevers
straightforward to fabricate.

F. Generalization

To demonstrate the generality of our design method, we
extended the code to handle diffusion doping. Diffusion was
implemented by generating a dopant concentration profile as
a function of furnace time and temperature, rather than sim-
ply concentration and thickness as in the case of epitaxy. The
diffusion model is based on Ref. 41 and was verified with
spreading resistance �Solecon Laboratories, Reno, NV� for a
POCl3 diffusion process �Fig. 9�a��. The diffusion model we
used importantly captures the kink and tail of the phosphorus
profile.

The performance of diffusion and epitaxy designs were
compared for a single case �Fig. 9�b��. Both the designs used
n-type �phosphorus� piezoresistors in contrast with the
p-type �boron� results presented elsewhere in the paper and
were optimized for operation between 1 Hz and 1 kHz with a
minimum cantilever thickness of 1 µm and maximum power
dissipation of 3.5 mW. The force resolution for the epitaxy
�Rs=19.5 
, Nz=5.49�107 cm−2� and diffusion �Rs

=26.2 
, Nz=3.50�107 cm−2� designs are 1.3 and 1.5 pN,
respectively. Clearly the optimal junction depth for the epi-
taxial piezoresistor is significantly less than for the diffused
piezoresistor; in the latter case, the entire cantilever is doped.

FIG. 8. �Color online� Force resolution comparison between cantilevers
optimized for operation in vacuum and in water for varying fmax. In the latter
case, fluid damping reduces the natural frequency and quality factor of the
cantilever, necessitating a reduction in length to maintain the same resonant
frequency. The effect is pronounced for high frequency operation and for
wider cantilevers.

TABLE III. Optimized p- and n-type epitaxial piezoresistive cantilevers.
Optimization was performed for operation from 1 Hz to 50 kHz with a
minimum thickness of 1 µm, maximum power dissipation of 2.5 mW, and
maximum bias voltage of 10 V. The minimum detectable force of the p-type
piezoresistor is 40% larger than that of the n-type piezoresistor.

Cantilever 1 2
Dopant Boron Phosphorus
fmin �Hz� 1 1
fmax �kHz� 50 50

l �µm� 74 69
w �µm� 2 2
t �µm� 1 1
lpr / l 0.33 0.36
tpr / l 0.25 0.17
n �cm−3� 4.4�1019 1.0�1020

Fmin �pN� 134 96
SF �V/N� 3.2�104 2.8�104

	* 0.38 0.36
Vnoise �V� 4.3�10−6 2.7�10−6

VH /VJ 1.1 0.86
fcorner �kHz� 5.5 3.5
N 5.5�108 8.7�108

k �N/m� 0.21 0.19
f0 �kHz� 250 250
f fluid �kHz� 130 130
Vbridge �V� 10 7.0
R �k
� 10 5.0
W �mW� 2.5 2.5
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Other extensions such as resonant force sensing, a de-
tailed thermal model, and ion implantation would be straight-
forward to implement in the future by direct calculation or
by integration with a finite element analysis or process simu-
lation tool.

IV. CONCLUSIONS

We have presented a general iterative optimization tech-
nique for the design of piezoresistive force sensors and pre-
sented results for the optimization of a broadband force sen-
sor. In summary, the optimal cantilever design strongly
depends on the frequency content of the signal and design
constraints. One benefit of iterative optimization is that con-
straints are applied as bounds rather than fixed parameter
values, leading to a more robust, user-friendly design pro-
cess. We demonstrated that the common choice of tpr / t
=1 /3 is not generally optimal when design and operation
constraints are considered �e.g., power dissipation, bias volt-
age� and when nonuniform dopant concentration profiles are
introduced �e.g., ion implantation, diffusion�. In general, op-
timal performance is obtained when the integrated Johnson

noise and 1 / f noise are approximately equal. We have fo-
cused on epitaxial piezoresistors here, but have also demon-
strated the generality of the method by extending the method
to diffusion doping.
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APPENDIX: OPTIMIZATION CODE
The cantilever optimization code used in this paper is

open source, written in object oriented MATLAB, and freely
available at http://microsystems.stanford.edu/piezoD. It re-
quires MATLAB R2008a or newer and the optimization tool-
box.
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