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Chapter 1

Introduction

1.1 What are Nanoplasmonic Probes?

Biocompatible nanoplasmonic probes are metallic nanostructures that can be used
for in vivo cellular imaging and high throughput applications including biomolecular
identification, screening and biochemical reaction characterization. Specific applica-
tions include detecting and imaging single protein molecules, monitoring cellular en-
zymatic activity via Surface Enhanced Raman Scattering (SERS) and in vivo surface
plasmon resonance (SPR) spectroscopy sensors for optically quantifying biomolecular
reactions in real-time.

Their utility depends upon the unique physical phenomena that manifest them-
selves on the nanometer scale. In particular, surface plasmon resonance dominates
the spectral characteristics of probes on this size scale, resulting in narrow extinction
peaks and large local electromagnetic field enhancements. The resonant frequency
of metallic nanoparticles depends strongly upon the dielectric properties of the lo-
cal medium and changes can be quickly and accurately detected optically, providing
great temporal and spatial sensitivity and specificity. The plasmon resonance can
be shifted into the near infrared (NIR) spectrum specifically for in vivo applications
through careful engineering so that the excitation light is not attenuated or scattered
by water and can penetrate living tissue effectively.

Localized surface plasmon polaritons as found in metallic nanoparticles will be
our primary interest in this paper for their applications in biocompatible nanoplas-
monic probes with potential in vivo applications, however propagating modes will
also be considered and their applications will be noted. A plasmon is a quantized
charge density wave, which is manifested classically as a propagating longitudinal
wave of charge carriers, typically electrons in the solid state. Plasmons exist in con-
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ducting media, such as metals, semiconductors and plasmas, both in the bulk and on
the surface. At the surface, plasmons interact strongly with electromagnetic waves
resulting in a coupled, localized optical-electrical elementary excitation known as a
surface plasmon polariton, which may propagate at the interface of two media when
certain constraints are met. A polariton is a quantum mechanical phenomenon in
which a photon is coupled with another excitation, such as a plasmon or phonon.
The term surface plasmon is an informal term for a surface plasmon polariton and
both terms will be used throughout this paper.

Localized surface plasmon-polariton modes manifest themselves as polarization
modes and result in significant local electric, magnetic and polarization field en-
hancements. At plasmon resonance, the effective scattering and absorption cross
sections of nanoparticles are significantly larger than their geometrical cross section,
which vastly improves the sensitivity of nanoplasmonic probes as compared to other
cellular probes for detection applications. They can be interpreted both quantum
mechanically and classically and both types of language will be used when appropri-
ate. Mie theory provides the firm theoretical background to describe the absorption
properties, internal fields and scattered far fields of dielectric particles.

Chapter 1 will introduce nanoplasmonic probes to the reader and discuss their
properties and applications in qualitative detail. Chapter 2 will discuss the relevant
theory with an emphasis on applications and computationally solve the equations
that correspond to well characterized physical situations. Chapter 3 will review the
numerical simulations performed to characterize nanoplasmonic probes and discuss
their relevance as a rapid design and testing platform for nanoplasmonic probes.
Chapter 4 will review the results of an experiment designed to demonstrate a new
technique for the high throughput, label-free identification of biomolecules and char-
acterization of biochemical processes using nanoplasmonic probes. Chapter 5 will
discuss future research goals.

1.2 A Survey of Nanoplasmonic Probes

1.2.1 Colloidal Metal Nanoparticles

Colloidal metal nanoparticles from 5 - 150 nm in diameter can be chemically syn-
thesized cheaply and easily and are the most historic of the nanoplasmonic probes
surveyed in this chapter. Metallic nanoparticle are also commonly referred to as
metal clusters, however the former notation will be used throughout this paper. Gold
nanoparticles have been used for centuries in stained glass windows for their bright
red coloring due to the selective absorption of incident light due to SPR. Gustav Mie
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Figure 1.1: Solutions of colloidal silver, nanocrescents and colloidal gold. [1]

developed his landmark electromagnetic theory in 1908 primarily to quantitatively
describe the optical properties of colloidal gold. The dominant surface plasmon po-
lariton modes of gold, silver, copper and platinum nanoparticles can be engineered
to fall in the visible spectrum. A number of nanoplasmonic probes in solution il-
luminated by a white light source are shown in Figure 1.1. From left to right, the
solutions contain 40 nm colloidal silver, 80 nm colloidal silver, gold nanocrescents,
50 nm colloidal gold, and 5 nm colloidal gold. The solution colors depend upon the
scattering and absorption spectra of the nanoplasmonic probes they contain, which
depend upon a number of parameters including size. It will be proven later that both
localized and propagating surface plasmon-polariton modes only exist at the inter-
faces where a positive dielectric function and negative dielectric function material
meet, with the dielectric functions assumed to be purely real.

Although the resonant behavior of individual, well separated metallic nanopar-
ticles is strong and controllable, they tend to aggregate into large groups that can
precipitate out of solution, and in which interparticle interactions involving the near-
field electric fields and the longer dipolar fields can lead to unpredictable results.
Single scattering hot sites with very large local field enhancements have been re-
ported in metallic nanoparticle aggregates with local field enhancements up to 1014

[2]. However, techniques for the accurate engineering of such sites have not been
developed. Individual metallic nanoparticles exhibit a significant local field enhance-
ment at SPR, but the resonant frequency can not be shifted into the NIR due to
their simple geometry, which reduces their applications as in vivo SERS substrates
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and biosensors except in aggregate form.
A technique for controllably aggregating silver colloids should be mentioned be-

cause it has been used to probe various biomolecules, including proteins, enzymes
and the mutations of the regulator gene for cystic fibrosis [3] [4] [5]. By reducing the
silver colloid in such a way that a negatively charged citrate surface layer is formed,
the nanoparticles will not aggregate and will remain in solution. Aggregates of con-
trolled size can be formed by introducing cations or acids into the solution to modify
the pH. In this manner, the single hot sites that randomly appear in large aggregates
are spread throughout the aggregate due to the formation of small, orderly clusters
which remain in solution and exhibit Brownian motion.

Gold is the most prevalent material used in the biological sciences because it does
not readily oxidize like silver and its surface can easily be conjugated using peptides
and antibody groups. Such functionalized, high specificity probes can be used to
selectively target specific biomolecules and tissues in vivo. Metallic nanoparticles,
especially gold, are useful as nanoplasmonic probes and they exhibit a strong plas-
monic response at sites in clusters that experience a significant interparticle mode
coupling. However the lack of reproducibility of such effects and a general lack of ac-
tual and control mechanisms has led research groups to develop other probe designs.

1.2.2 Gold Nanoshell

Although metalic nanoparticles exhibit a large plasmon response and local field en-
hancement, especially in aggregates when there is a significant amount of inter-
particle coupling, their plasmon response can not be engineered over a very wide
spectrum. The engineering and design capabilities of the single nanoparticle were
vastly improved by modifying its geometry to that of a thin metal shell surrounding
a spherical dielectric core. The SPR frequency of the metal nanoshell is determined
by the degree of surface mode coupling between the inner and outer metallic surfaces,
or equivalently, by the ratio of shell thickness to the mean shell radius. The final
resonance frequencies of the gold nanoshell exist as hybrid modes generated from the
inner and outer plasmon resonances and the hybridized theory has many analogies
to molecular orbit theory [6]. The optical resonance can be engineered to lie any-
where in the visible spectrum and well into the NIR [7]. The overall scattering and
absorption behavior of nanoshells is determined by their size; particles much larger
than the quasistatic limit primarily scatter light whereas smaller particles absorb it.

The dipole limit of a nanoparticle is reached when its size is much smaller than
the wavelength of light and the electric field can be approximated as constant across
it. Nanoshells with smooth surfaces in the dipole limit approach the behavior of
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single metallic nanoparticles due to the dominance of the dipolar excitation mode,
which will be explained in Chapter 2. Silver nanoshells display plasmon frequencies
that are blue shifted and more intense compared to gold nanoshells of similar sizes
[8].

The absorption cross-section of the gold nanoshell, and other nanoplasmonic
probes, is approximately six orders of magnitude greater than comparable, conven-
tional NIR fluorescent dyes such as indocyanine green [9]. The plasmon response
of a hollow metal nanoshell can be analyzed as the interaction between the sur-
face plasmon polariton modes on the outer surface and on the inner surface of the
shell through near-field electromagnetic field coupling. Rather than the single plas-
mon resonance displayed by metallic nanoparticles, nanoshells exhibit two resonance
peaks corresponding to the symmetric and antisymmetric surface eigenmodes.

The dielectric properties of the dielectric core and surrounding medium affect the
plasmon response, and the response rate of the optimized gold nanoshell varies be-
tween 100 and 200 nm

RIU
(Refractive Index Unit), which is comparable to the response

of solid nanoparticles [10]. The spectral width of the gold nanoshell is relatively wide,
with reported values of 760 meV (1632 nm) for a group of nanoshells suspended in
solution and 540 meV (2298 nm) for an individual nanoshell attached to the surface
of a conductive substrate [11]. The spectral width of the plasmon peaks is wider than
other nanoplasmonic sensors and the primary benefit of nanoshells over nanoparticles
is the ability to engineer the response of the former.

Gold nanoshells are produced via molecular self-assembly and reduction reac-
tions which can be scaled to produce large quantities cheaply. The nanoshell pro-
duction method is a prototypical example of the bottom up approach to nanotech-
nology, which emphasizes self-assembly and chemical reactions whereas top down
approaches emphasize semiconductor manufacturing techniques such as electron gun
and chemical vapor deposition, thermal oxidation and lithography. To produce gold
nanoshells, monodisperse silica nanoparticles are grown via the Stöber method [12],
through which alkyl silicates are hydrolyzed into silicilic acid in an alcohol solution
to generate the nanoshell dielectric core. Next, 3-Aminopropyltriethoxysilane is ad-
sorbed onto the surface of the silica nanoparticle in an aqueous solution resulting in
the growth of an amine surface layer. Then, nanometer sized gold colloids are intro-
duced to the solution which readily bond to the amine ligands with approximately
30% coverage. Finally, a mixture of chloroauric acid and potassium carbonate is
reduced by sodium borohydride to grow a uniform gold shell from the gold colloid
seeds. The basic silica-amine-gold colloid is modular and effective enough to be ap-
plied to other transition metal nanoshells such as silver. As would be expected, gold
nanoshells are much less thermodynamically stable than their bulk material counter-
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parts. The deposition of an additional 60 nm silica thin film to seal the gold nanoshell
results in its effective melting temperature increasing from 325 ◦C to 600 ◦C without
any measurable effect on its optical properties.

Gold nanoshells are useful in cellular imaging because their tuned frequencies
can be used for single light source multiplexing and their surfaces can be conjugated
with antibodies or peptides to attach to specific cell and protein binding sites [13].
Additionally, at SPR they are very efficient at converting the excitation light energy
into thermal energy, which can be used for the localized thermal ablation of selected
tissues such as cancerous tumors in vivo using a NIR excitation light source. Al-
though gold nanoshells exhibit a significant local field enhancement at resonance,
reportedly on the order of 102 [14], other nanoplasmonic probes such as the nanoring
and nanocrescent have been developed specifically as SERS substrates that maximize
the local field enhancement [15].

1.2.3 Nanocrescent

The nanocrescent is a recent nanoplasmonic probe design that is being developed at
UC Berkeley in the BioPOETS (Biomolecular Polymer OptoElectronic Technology
and Science) group in the Bioengineering department under Professor Luke Lee [1].
It improves upon past probe designs by including sharp tips which increase intra-
particle mode coupling between the cavity and outside surface modes and strong
tip-tip interactions leading to a significant local electromagnetic field enhancement
at the tips and additional degrees of freedom for optimization. A transmission elec-
tron microscopy (TEM) image of a gold nanocrescent cross-section can be seen in
figure 1.2.

The intraparticle mode coupling interactions dominate the electromagnetic prop-
erties of the nanocrescent and small changes in terms of the opening aperture di-
ameter, inside and outside diameters can significantly change its optical properties.
The plasmon frequency of nanoparticles and the nanoshell can be tuned by embed-
ding them into high refractive-index substrates. However, additional complexity and
reduced symmetry of the nanocrescent with respect to the nanoshell increases the
degrees of freedom available to tuning. Biomolecules can be adsorbed at the tip
aperture for increased spatial resolution and greater local field enhancement than
other nanoplasmonic probes.

The gold nanocrescent is fabricated using a top down approach by rotation-
ally evaporating a thin gold layer using electron beam deposition onto a sacrificial
polystyrene nanosphere at an angle. The coated nanospheres are then released into
aqueous suspension by acetone, collected and the sacrificial nanospheres are sub-
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100 nm

Figure 1.2: A TEM image of a gold nanocrescent. [1]

sequently dissolved using toluene. There are both benefits and drawbacks to the
nanocrescent fabrication process compared to colloidal metals and nanoshells. It is
relatively expensive, in that the required vacuum chamber and deposition equipment
both require a significant amount of capital and the overall processes does not scale
as well as self-assembly fabrication techniques. However, the deposition process can
be adapted to any material that can be sputtered or electron beam deposited, such
as iron for magnetically modulated nanocrescents, which will be discussed later. Ad-
ditionally, the geometry of the nanocrescent can be well controlled by changing the
deposition angle and sacrificial nanosphere size and future nanoplasmonic probes will
be able to utilize similar equipment if they are designed appropriately.

1.2.4 Semiconductor Quantum Dots

Quantum dots are semiconductor nanocrystals that have unique electronic bandgap
properties, which translate into useful optical properties for bioengineering and ap-
plied physics applications such as single electron transistors [16]. They are typically
binary compounds from groups II and VI or II and V, with common examples being
CdSe, CdS, ZnSe, ZnS, InP and InAs. While quantum dots are not nanoplasmonic
probes, there are still of interest and can be considered a closely related technology
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in all of the applications that nanoplasmonic probes are used for, except SERS.
The useful optical properties of metal nanoparticles are derived from the rapid

increase in absorption and scattering at plasmon resonance, while the properties
of quantum dots are derived from a specific, controllable emission energy due to
the quantum mechanical confinement of excitons generated from incident photons.
The exciton wave function and energy eigenvalues can be approximated using the
classic introductory quantum mechanical problem of the free-particle in the three
dimensional energy well, where the boundary conditions lead to discrete permissible
system states. As the size of the well or quantum dot increases, the energy eigenvalues
decrease and emission photons move to longer wavelengths. For example, a 3 nm
diameter CdSe quantum dot will emit at 520 nm while a 5.5 nm CdSe will emit at
630 nm [17].

Quantum dots can be excited in a broad spectrum band above the particular chac-
teristic emission wavelength and they find biological applications in cellular imaging,
multiplexed tagging and optical identification. Organic fluorophores, which have
been the dominant technological approach to cellular imaging and tagging over the
past several decades, have an asymmetric, narrow, absorption band that is at a
slightly higher energy then the emission band. Therefor each fluorophore can only
be excited at a specific wavelength using specific light source. Commonly encoun-
tered organic fluorophores include fluorescein and Rhodamine 6G, which have been
used in real-time imaging of live cells, gene expression profilng cell sorting and clinical
diagnostics.

Several problems with quantum dots which have been solved in the past few
years include cytotoxicity concerns, hydrophobicity, and blueshifting. By encapsu-
lating quantum dots in micelles, phospholipid membranes, they can simultaneously
be made hydrophyllic and biocompatible, although they are still fragile. Quantum
dots have been used to image the tissue of living frogs [17] and they can be con-
jugated using peptides and single strands of DNA to provide biomolecular binding
specificity. The quantum yield, or the average ratio of the emitted photons to the
number absorbed, can reduce over time due to photoinduced crystal defects. It can
be improved by capping quantum dots with higher bandgap energy shells which re-
move the electronic excitation from the surface in contact with the environment.
The quantum yield can be improved by reducing the number of surface trapping
states and crystal defects that can prevent the recombination of the exciton pair
and subsequent photon emission. Additionally, oxidizing environments and photoin-
duced oxidation can decrease the core quantum dot size and blueshift the emission
wavelength.
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1.3 Applications of Nanoplasmonic Probes

1.3.1 Surface Enhanced Raman Spectroscopy

Raman scattering, the inelastic scattering of light from matter, was discovered in 1928
by Chandrasekhara Raman, who received the Nobel prize in 1930 for his discovery
[18]. Modern Raman spectroscopy is a robust, label-free technique that requires
very little sample preparation and is used to study the low-frequency vibrational
and rotational energy levels of single molecules via Raman scattering. The Raman
spectroscopy signature of a molecule is like a fingerprint and can be used for both
characterization and rapid identification once a signature is known and stored in
a database. The light is inelastically scattered due to the absorption of energy by
phonons and other excitation modes. By illuminating a sample with a monochro-
matic laser beam and then sending the scattered light through a monochromator and
spectrometer, the incident wavelength can be filtered out and the Stokes and anti-
Stokes shifted light, corresponding to a decrease and increase in energy respectively,
can be detected and analyzed. Enzymatic activity can be detected by studying the
changes in the chemical bonds in molecules when specific proteins are added. Raman
spectroscopy can be used in gas, liquid and condensed matter research. Actual spa-
tial and temporal resolutions vary significantly between laboratory tools and partic-
ular arrangements, however there are many reports of single molecule detection and
protein studies using SERS [19] [20] [21]. Raman spectroscopy has recently demon-
strated in the ex vivo characterization of breast tissue [22]. The non-invasive optical
detection of breast cancer carries a number of benefits, including reduced cost due to
automation, reproducibility, portability and a vastly reduced turn-around time from
several months to several minutes.

Surface Enhanced Raman Scattering (SERS) was discovered experimentally in
1974 from experiments using pyridine adsorbed onto a roughened silver electrode
surface [23]. There are two mechanisms that contribute to SERS; an electromagnetic
one and a chemical one [24]. The electromagnetic contribution is the less complicated
mechanism and results in the rate of Raman scattering, which is usually exception-
ally low, scaling according to E4 [25]. The maximum local field enhancement in
nanoplasmonic probes on resonance can be on the order of E8, and the overall SERS
effect transforms a very weak, anomalous effect into a useful, non-destructive, highly
informative spectroscopic technique.
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1.3.2 Proteomics

Nanoplasmonics has been actively contributing to the field of proteomics for years,
succesfully identifying and characterizing single protein molecules and monitoring
enzymatic activity in vivo using silver colloids [3] [5]. Proteomics is the next logical
step in the reductionist approach to molecular cellular biology [26]. Gene and protein
expression are the processes by which the information stored in nucleic and amino
acids is converted into proteins and cellular structures and functions. Proteomics
relies upon our ability to identify proteins in order to quantify the expression of
specific genes, measure protein diversity and to isolate and replicate specific proteins
for more detailed study using techniques like x-ray crystallography.

High sensitivity, high throughput microassays were developed in the late 1950s
to measure the concentrations of hard to detect biomolecules such as hormones [27].
Assays are the interface through which nanoplasmonic probes and other sensors and
markers discussed in this paper interact with the desired biomolecules. Microassays
include ligand assays such as immunoassays, which utilize antibody-antigen bonding
for specificity, and polynucleotide assays, which utilize single stranded DNA bonding.

Microassays are of interest because the measurement volume and times are greatly
reduced while sensitivity is greatly increased. Sensitivity can be expressed in quan-
titative terms as the ratio of response rate of measured signal to input, commonly
referred to as the dose-response rate [27]. By using smaller sensors, the measured
variable is disturbed less by the act of measurement. For example, introducing a
large thermometer into a very small volume of water will change the measured tem-
perature to such a large extent to the heat capacity of the thermometer that the
significance of the data becomes negligible. Similarly, the sensitivity of small sensor
volumes is counter intuitively greater than macroassays.

Biosensors, such as nanoplasmonic probes, act as the signal mediator to yield
quantitative measurements of binding event frequencies and timing with both tem-
poral and spatial sensitivity between the analyte of interest and the label or assay.
Assays can be designed to either measure the number of binding sites (noncom-
petitive) or to measure the difference between the number of unbound sites before
and after the reaction (competitive), although the former approach has been proven
to be more accurate in practice [27]. Multiple binding agents can be used to in-
crease sensitivity and statistical significance. Typical labels include radioisotopes,
enzymes, fluorophors and chemiluminescent markers that signal binding reactions
through measurable pathways, such as by the production of photons. The sensitiv-
ity of a binding assay can be interpreted as the total measurable signal produced
per analyte molecule in solution, and sensitivity can be increased by using assays
with higher binding affinities and sensors with higher quantum yields and spectrally
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narrow emission spectra, for example.
High throughput protein identification systems are currently primarily based

upon mass spectrometry and two dimensional gel electrophoresis. Both techniques
depend upon cleaving proteins and separating them by mass and charge, and both
will continue to be useful for performing laboratory studies of molecular structure.
However, there are several reasons that optical identification techniques will pro-
vide better high throughput results in the future. First, proteins can be selectively
tagged with optically active markers such as nanoplasmonic probes or quantum dots
by peptide or antibody conjugation, and a single light source can be used to excite
multiple markers at once. Furthermore, single protein molecules can be studied using
label-free techniques such as SERS and SERRS immunoassays [3]. Both Raman spec-
troscopy and other optical identification techniques are non-destructive and label-free
techniques that can be utilized to minimize the chance of any conformational changes
or the possibility of denaturing during in vivo detection. Protein expression varies
widely within cells and tissue and nanoplasmonic probes can be used to track and
characterize proteins over time and in vivo. Finally, nanoplasmonic probe assays can
be miniaturized, arrayed and integrated into protein biochips with the potential to
change proteomics in the way that DNA biochips have revolutionized genomics and
lead to the completion of the Human Genome Project.

Most of the issues that are making it difficult to development a human proteome
database in analogy to the successful human genome project are related to a lack
of sensitivity and statistical certainty. Approximately 90% of all protein matter
in living human tissue is composed of just 10% of the estimated human proteome
database, which means that proteomics is essentially the study and characteriza-
tion of background noise in terms of concentrations. Even in simplest known living
organism, Mycoplasma genitalium, only 73% of the total estimated proteins have
been observed and 32% have been characterized in detail [27]. The polymerase chain
reaction (PCR) that is widely used to duplicate small sections of DNA for character-
ization does not have a protein equivalent and the development of highly sensitive
analytical techniques is required for future breakthroughs in proteomics.
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Chapter 2

Theory

Small particles on the order of the wavelength of light exhibit a number of novel
optical properties and can be both very efficient scatterers and absorbers of elec-
tromagnetic waves [28]. The first mathematically rigorous theory for the scattering
of an incident plane wave on an isotropic, non-magnetic, optically linear dielectric
sphere of any size in a homogenous, non-absorbing media was developed in 1908
by Gustav Mie, with notable earlier independent contributions from Alfred Clebsch
and Ludvig Lorenz [29]. Mie theory encompasses the more commonly encountered
Rayleigh scattering theory at very small sizes and is the more general theory.

The scattered fields as described by Mie theory are applicable to all classes of
solid matter, however electromagnetic surface modes that are negligible in insulators
become noticeable in many crystal lattices and pronounced in metals, resulting in a
number of excitation eigenmodes at which the scattering and absorption of incident
light is vastly increased. Both surface phonon-polaritons and plasmon-polaritons
exist in solid state matter, however we will only discuss the theory behind latter.
Charge carriers, such as the valence electrons that are always present in a metal or
the quantized lattice waves in all crystals, commonly known as phonons, are required
for the appearance of localized surface modes to satisfy Maxwell’s equations where
∇ · E 6= 0.

The terms surface plasmon, surface plasmon resonance and surface plasmon po-
lariton are used interchangeably in literature to describe both the propagating modes
found in thin films (see section 2.6) and the localized surface modes found in metallic
nanoparticles. The electromagnetic character of the two plasmon polariton modes
varies significantly and great care must be taken not to confuse their respective
governing equations and results. For example, localized surface plasmon polariton
modes result in the increased scattering of light, whereas in thin films they result in
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Figure 2.1: The complex dielectric functions of gold and silver based upon experi-
mental data [31].

the complete absorption of polarized light.
Bulk propagating longitudinal electron waves, or plasmons, only appear in metals

at the plasma frequency when ε(ω) = 0. Propagating surface plasmon-polaritons and
surface plasmon-polariton normal modes, distinguishable from bulk plasmons that
occur away from the surface, can occur at any frequency when ε(ω) < 0 and wave
vector components tangential to the surface are matched. In quantum mechanical
terms, the momentum of the incident photon and the generated plasmon-polariton
must be matched, which can occur in thin metal films at the boundary of a dispersive
medium and in diffraction gratings [30].

The localized electromagnetic surface modes can appear due to both phonon-
polaritons and plasmon-polaritons in nanoparticles. However, in this case the domi-
nant feature is the surface electromagnetic field and the induced polarization rather
than a propagating wave at the boundary. The momentum matching condition
does not apply in the case of localized surface modes, which increases their range
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of feasible applications significantly. Coupling between bulk plasmons and surface
plasmon-polaritons is typically negligible for the particle sizes and optical frequencies
that are of practical interest [32].

SPR theory is awkward to describe without the extensive use of mathematical
symbols, particularly due to the prevalence of complex numbers. The dielectric
function, as well as other functions and variations, will be often be referred to in the
form y = y′+ iy′′, where the single prime denotes the real part and the double prime
denotes the imaginary part of the variable or function. Additionally, the interface of
a dielectric medium and a metal will often be considered, and the properties of the
media will be referred to in the form yi and yo, where the former refers to the metal
properties and the latter refers to the outside dielectric medium.

Nanoplasmonic probes can be engineered for a number of different applications,
and the design goals and constraints can vary widely. Thermal ablation and SERS
probes for biomolecular detection are engineered to have a very high absorption
cross-section for localizd heating or local field enhancement and a resonance peak in
the NIR for invivo compatibility. Cellular imaging probes and probes designed for
high throughput spectral imaging require narrow, controllable and well characterized
scattering peaks with negligible absorption. These design goals can be achieved
through the theory of this chapter and verified through numerical simulations and
experiments, which will be discussed in Chapters 2, 3 and 4.

2.1 The Complex Dielectric Function

The complete response of crystalline materials to electromagnetic waves is encap-
sulated by the frequency dependent dielectric function. It will be proven later in
this chapter that the most general electromagnetic requirement for the excitation
of surface plasmon-polaritons, which applies to both thin films and nanoplasmonic
probes, is that ε′i < 0 and ε′o > 0. Most solid state dielectrics have positive values
of ε′ and they are commonly encountered in all fields of science. Most metals have
a negative value of ε′ below the plasma frequency, which can be interpreted as the
maximum oscillation frequency at which the electrons in the metal.

The Drude model of metals supplies the real part of the complex dielectric func-
tion at visible and ultraviolet frequencies as [28]

ε′(ω) = 1−
ω2

p

ω2
(2.1)

where ωp, the plasma frequency, is given by
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ω2
p =

Ne2

meε0
(2.2)

where N , e and me are the electron density, charge and mass, respectively. (2.1) is
useful as a first order approximation, however it assumes that the dielectric function
depends solely upon frequency and does not account for wave dispersion effects or
electron transitions.

The plasma frequency is the critical value below which ε′ is negative. At fre-
quencies below it, the electrons in the metal oscillate in phase with the incident field
and rapidly attenuate the field in the direction of propagation. Thus, propagating
transverse waves are not supported below the plasma frequency, as can be verified
by the fact that metals are opaque and can reflect light at optical frequencies.

Above the plasma frequency, metals are essentially transparent and absorption
is negligible. As the frequency approaches ωp, ε

′ approaches zero from the negative
side and ε′′ approaches zero from the positive side. It can be shown that at ωp, bulk
plasmons are valid solutions to Maxwell’s equations and can be observed experimen-
tally as longitudinal charge waves where ∇ · E 6= 0. For most metals the plasma
frequency lies in the ultraviolet and light x-ray range, however for noble metals such
as gold, silver and copper it lies in the near ultraviolet and visible spectrum, which
is the source of their distinctive colors.

The optical properties of a wide range of metals are summarized in table 2.1. It
will be shown that the value of ε′′ at plasmon resonance is directly proportional to
the width of the scattering and absorption resonance peaks. For applications that
require a narrow resonance peak, the optical properties of silver are better suited than
gold due to its much lower value of ε′′. However, there are three reasons that gold
is often better suited for bionanophotonics applications. First, silver readily oxidizes
in most environments unless special care is taken and the formation of a surface
oxide layer disrupts its nanoplasmonic properties. Second, the plasmon resonance
of gold is inherently at a longer wavelength than silver due to the more negative
ε′ of the latter (Fig. 2.1). The plasmon resonance frequency of nanoplasmonic
probes can be engineered using structures like the nanoshell and nanocrescent, so
the issue of resonance wavelength is not absolute. Finally, gold surfaces are more
often terminated by ligands or peptides with high binding specificity in literature
than silver and presumably the techniques used for gold are better characterized.

Selected equations in this chapter were solved and plotted in MATLAB. All fig-
ures are original and can be generated by running the source code included in the
Appendix. One aspect of Mie scattering that will not be discussed in this chapter is
the angular dependence of the scattered intensity. That topic is beyond the scope of
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Table 2.1: Properties of Bulk and Surface Plasmons in Selected Materials [28]

Bulk Plasmon Surface Plasmon ε′′ where
Solid Energy (eV) Energy (eV) ε′ = −2

Lithium 6.6 3.4 1.0
Sodium 5.4 3.3 0.12
Potassium 3.8 2.4 0.13

Magnesium 10.7 6.3 0.5
Aluminum 15.1 8.8 0.2

Iron 10.3 5.0 5.1

Copper — 3.5 4.9
Silver 3.8 3.5 0.28
Gold — 2.5 5.0

Graphite — 5.5 2.7

this paper and the reader is referred to other, more advanced resources [28] [33].

2.2 Surface Modes in Spheres, The Electrostatic

Approximation

In the case of spherical particles much smaller than the incident wavelength, the
phase ]s of the electromagnetic field across the particle is negligible and a complex
scattering and absorption problem is reduced to a set of electrostatic equat-0ions.
The dielectric functions of metal clusters larger than the electron mean free path, on
the order of 10 nm, are identical to their bulk counterparts and are size independent.
Clusters that are on the order of several nanometers in diameter have size-dependent
dielectric functions which must be accounted for to yield accurate results. We will
primarily be concerned with clusters between 10 and 30 nm in diameter in this
section. An extensive and interesting discussion of the size dependent dielectric
function can be found in Kreibig [33].

The electrostatic approximation assumes that the electric field is spatially con-
stant across the sphere and the magnetic field is negligible, although the former field
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still has a sinusoidal time dependence, and that there are no free charges. These
assumptions lead to the following Maxwell’s equations in differential form.

∇ ·D = 0

∇× E = 0. (2.3)

By expressing both equations in terms of the polarization field, P , the following
two equations are obtained.

εi(ω)

εi(ω)− 1
∇ ·P = 0 (2.4)

1

εi(ω)− 1
∇×P = 0 (2.5)

where εi is the frequency dependent complex dielectric function of the particle.
There are three possible solutions:

1. ∇ ·P = 0 and εi(ω) = ∞, which corresponds to propagating transverse modes
in the sphere. These are not supported by metals when ε < 0.

2. ∇ × P = 0 and εi(ω) = 0, which corresponds to bulk longitudinal plasmon
modes.

3. ∇·P = 0 and ∇×P = 0, which corresponds to the surface plasmon-polaritons,
which can are polarization normal modes in metal spheres in the electrostatic
approximation.

The electromagnetic fields from the third solution can be solved for and the
resonant frequencies are found by the following characteristic equation

εi(ωl) = εo
l + 1

l
, l = 1, 2, 3, . . . (2.6)

where ωl is the frequency of the lth surface mode. The surface mode frequencies
and polarization modes will be solved in detail in the following sections. As noted
earlier, higher order modes in the electrostatic approximation (when l > 1) are
negligible so when εi(ω) = −2εo, the polarization field is typically at a resonance
maximum. The dipolar mode is also commonly referred to as the Fröhlich mode in
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Figure 2.2: Extinction spectra for 10 nm diameter gold spheres in various media
using the electrostatic approximation.

literature. The electric fields inside and outside the sphere are described by spherical
harmonics of order l.

In the electrostatic limit, scattering is dominated by absorption [33]. The total
extinction cross section written in explicit complex variable notation is

σe(ω) =
54π2

λ

ε
3/2
o R3ε′′i (ω)

[ε′i(ω) + 2εo]2 + (ε′′i )
2

(2.7)

The plasmon resonance width, is [33]

τ ∝ 2ε′′i√(
∂ε′

i

∂ω

)2

+
(

∂ε′′
i

∂ω

)2
(2.8)

(2.7) and (2.8) imply that the plasmon resonance frequency is determined by both
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ε′i and ε′′i and that the resonance width is smallest for materials with small ε′′i and
rapidly changing dielectric functions. The four metals that have optical dielectric
functions when immersed in low refractive index media are gold, silver, copper and
aluminum (Table 2.1).

It is important to note, particularly in the design of nanoplasmonic probes, that
the surface mode frequencies depend heavily upon the dielectric function of the em-
bedding medium. An increased dielectric function is indicative of a more easily
polarized material and as the dielectric function of the embedding material increases
the restoring force on the electrons decreases. The motion of the surface electrons
is analogous to a damped, sinusoidally driven spring system. The final frequency of
the system is a function of the natural frequency of the electrons, the damping forces
present and the driving frequency, and as the damping force increases the actual
frequency decreases resulting in a red-shift and damping of the plasmon resonance
modes. By sensing the shift in the plasmon resonance frequency the dielectric func-
tion of the local environment can be calculated and functionalized, optically sensed
bioassays are being developed based upon this principle, and this type of sensor is
generically called an SPR spectroscopy biosensor.

The extinction spectra of 10 nm diameter gold spheres in various media calcu-
lated using the electrostatic approximation are shown in figure 2.2. The dielectric
functions of the immersing media are approximated as completely real and frequency
invariant. The dielectric functions of air, water and gelatine used are 1.0, 1.79 and
2.37, respectively. The strong dependency of the resonance frequency, intensity and
width on the outside dielectric function is shown.

2.3 Formulation of the Helmholtz Equation

Maxwell’s equations in polarizable, conducting, homogenous and isotropic media can
be written in the following form [28]

∇ ·D = ρ

∇ ·B = 0

∇× E = −∂B
∂t

∇×H = J +
∂D

∂t

where E is the electric field, D the electric displacement, H the magnetic field
and B the magnetic induction. D and H are defined as
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D = ε0E + P

H =
B

µ0

−M

where P is the electric polarization, M the magnetization, ε0 the permittivity of
free space and µ0 the permeability of free space. The following constitutive relations
complete our set and allow us to form the field equations when subjected to harmonic
fields.

J = σE

B = µH

P = ε0χE

Where σ is the electrical conductivity, µ the magnetic permeability and χ the
electric susceptibility.

When such media are subjected to a time varying harmonic field with an assumed
e−iωt time dependence, these equations result in the following complex field equations

∇ · (εE) = 0 (2.9)

∇ ·H = 0 (2.10)

∇× E = iωµH (2.11)

∇×H = −iωεE (2.12)

ε = ε0(1 + χ) + i
σ

ω
(2.13)

It is important that all material properties enter into our final equations through
the complex electric permittivity ε and the magnetic permeability µ. By taking the
curl of (2.11) and (2.12), using the double-curl vector identity and assuming that
∇ · E = 0, it is found that both the electric and magnetic fields must satisfy the
Helmholtz equation

∇2E + k2E = 0 (2.14)

∇2H + k2H = 0 (2.15)

where k2 = ω2εµ. These vector wave equations are precise for well-separated
particles and hold true both in the limit of very small spheres where the electrostatic
equations apply, called the non-retarded case, and the general problem that considers
wave retardation effects [32].
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2.4 Surface Modes in Spheres, General Solution

Spheres that experience both spatial and temporal electromagnetic field variations
experience retardation effects, which result in the surface-plasmon resonances being
both shifted and broadened and the appearance of higher order multipolar mode
excitations that lead to multiple resonance peaks. The quadropolar mode becomes
notable at cluster diameters on the order of 80 nm and larger [28].

As noted earlier, neither propagating transverse nor longitudinal waves exist at
frequencies below the plasma frequency, which for most metals is true at frequencies
lower than the ultraviolet spectrum. In the Helmholtz equation, k can be found
to equal the wave propagation constant

√
εω

c
and all solutions are transverse waves

because ∇ · E = 0. To find the two independent transverse solutions of the electric
field (TE) and the magnetic field (TM), we can reduce the problem from a vector
one to a scalar one with well known solutions and then use them to solve the vector
Helmholtz equation. The scalar Helmholtz equation is

∇2ψ + k2ψ = 0 (2.16)

with solutions

ψlm = jl(kr)Y
m
l (θ, φ) l = 1, 2, 3, . . . m = 0,±1, . . . ,±l (2.17)

where jl is a spherical Bessel function of the first kind and Y m
l is a spherical

harmonic. Solutions to the vector Helmholtz equation can be obtained from the
scalar solutions, and are of the form

Mm
l = ∇× (rψm

l ) (2.18)

Nm
l =

1

k
∇×Mm

l (2.19)

Additionally, Mm
l and Nm

l are are related by

Mm
l =

1

k
∇×Nm

l (2.20)

The transverse electric (TE) modes, where the electric field is in the azimuthal
direction and the magnetic field is in the radial direction, are given when E = Am

l Mm
l

and H = −iAm
l k

c
ω
Nm

l . The transverse magnetic (TM) modes are obtained when
E = Bm

l Nm
l and H = −iBm

l k
c
ω
Mm

l . Am
l , Bm

l and the field components both inside
and outside the sphere can be obtained by satisfying the field continuity requirements
at the boundary and the implicit requirements of the TE and TM modes.
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After a significant amount of math, it can be shown that the TE modes do not
have solutions when ε(ω) < 0 and no surface modes can exist [32]. The TM polariton
modes are radiative, have a finite lifetime and can be excited by incident transverse
magnetic plane waves. By taking the first few terms of the power series expansion
of the TM solutions, it can be also be shown that their solutions agree with the
electrostatic model at small dimensions.

The spherical characteristic equation, which can be solved to obtain the excitation
frequency eigenvalues, is

εohl(koR)[kiRjl(kiR)]′ = εijl(kiR)[koRhl(koR)]′ (2.21)

where, jl is a spherical Bessel function of the first kind, yn is a spherical Bessel
function of the second kind, hl is a spherical Hankel function of first or second kinds,
which are jl + iyl and jl− iyl, respectively, and ′ denotes differentiation with respect
to the function arguments.

The scattering and absorption cross sections in units of the geometric cross section
are

σs =
2

(koR)2

∞∑
l=1

(2l + 1)(|al|2 + |bl|2) (2.22)

σa = − 2

(koR)2

∞∑
l=1

(2l + 1)[(|al|2 + |bl|2) + Re(al + bl)] (2.23)

where the net extinction of incident light is given by the sum of σs and σa. The
Mie coefficients al and bl are

al = − jl(kiR)[koRjl(koR)]′ − jl(koR)[kiRjl(kiR)]′

jl(kiR)[koRhl(koR)]′ − hl(koR)[kiRjl(kiR)]′
(2.24)

bl = − εojl(koR)[kiRjl(kiR)]′ − εijl(kiR)[koRjl(koR)]′

εohl(koR)[kiRjl(kiR)]′ − εijl(kiR)[koRhl(koR)]′
(2.25)

As can clearly be seen, the complete theory is significantly more complicated
than the simplified electrostatic at the limiting case of very small size. At the sur-
face mode frequencies, the denominators of the Mie coefficients approach zero but
are bounded by ε′′i , which implies that materials should be selected for nanoplasmon-
ics with very small imaginary dielectric function components at the Fröhlich mode
frequency, which dominates at the small sizes.

26



5 6 7 8 9 10
x 10−7

0

0.2

0.4

0.6

0.8

1

x 10−3

Wavelength (m)

Ef
fe

ct
ive

 C
ro

ss
 S

ec
tio

n

Air, Absorption
Air, Scattering
Water, Absorption
Water, Scattering
Gelatine, Absorption
Gelatine, Scattering

Figure 2.3: Calculated scattering and absorption spectra for 20 nm diameter gold
spheres in various media using Mie theory in spherical coordinates.

The scattering and absorption spectra of 20 nm diameter gold spheres immersed
in several solutions are shown in figure 2.3. The dipolar surface plasmon-polariton
mode again dominates the mode profile. The dipolar mode frequency calculated by
the exact Mie theory is higher than the frequency expected from the electrostatic
approximation, shown in figure 2.2. The resonance intensity, frequency and width are
dependent upon the dielectric function of the immersing medium and of the material
complex dielectric function.

For gold and silver particles smaller than 50 nm, the first polarization normal
mode dominates the higher order moments and absorption is the primary source of
optical extinction [28]. Below 10 nm in diameter, the particle surface increasingly
scatters light and the plasmon resonance is both broadened and reduced in magnitude
[34].

Gold nanoparticles less than 10 nm in diameter absorb strongly in the green, and
a solution of such nanoparticles will appear red. As their size increases, the plasmon
resonance shifts into the red and they begin to appear blue. Scattering is weak for
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particles less than about 50 nm, but red light is the dominant scattered wavelength
due to the high scattering cross section at the resonance frequency. At larger sizes
they appear slightly reddish due to the dominance of a broad scattering peak and
their useful plasmonic properties are quenched.

2.5 Surface Modes in Infinite Cylinders

Infinite cylinders are of particular interest because their simple geometry can be
numerically simulated and results can rapidly be compared with theoretical com-
putations (Fig. 2.4). Complex two dimensional simulation structures, such as the
nanocrescent, can only be simulated in two dimensions for a number of reasons that
will be addressed later.

The method of solving the cylindrical case is very similar to the spherical case
with a few differences. First, the scalar solution is of the form

ψh
n = Jn(λr)einφeihz (2.26)

where r, φ and z are the cylindrical coordinates and Jn is a Bessel function of
the first kind. λ =

√
k2 − h2, where h = 0 for normally incident light, which will

be of primary interest to us because that is the only case when pure TM and TE
modes exist independently. The purpose of the two dimensional theory is to have a
simplified testbed for analyzing numerical simulations and actual experiments will
always involve spherical geometry, where only TM modes are supported. Thus, we
will focus on the TM modes in cylindrical coordinates, or equivalently, our excitation
light will always be normally incident upon the cylinder. Only radiative polariton
modes will exist for this arrangement, which means that they will always be excitable
as in the spherical case.

The characteristic equation for the cylindrical TM mode is of the form

kiJ
′
n(kiR)Hn(koR) = koJn(kiR)H ′

n(koR) (2.27)

where again, Jn is a Bessel function of the first kind, Yn is a Bessel function of the
second kind, Hn is a Hankel function of the first or second kinds, which are Jn + iYn

and Jn − iYn, respectively, and ′ denotes differentiation with respect to the function
arguments.

The scattering and absorption efficiencies are given as

Qs =
2

koR

∞∑
n=−∞

|ap
n|2 (2.28)
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Figure 2.4: Calculated absorption spectra for gold cylinders of various diameters in
air of using Mie theory in cylindrical coordinates.

Qa =
2

koR

∞∑
n=−∞

−(Re(ap
n) + |ap

n|2) (2.29)

where ap
n for the incident TM light polarization case (E in the radial direction,

H in the z direction) is of the form

ap
n = − koJ

′
n(kiR)Jn(koR)− kiJn(kiR)J ′n(koR)

koJ ′n(kiR)Hn(koR)− kiJn(kiR)H ′
n(koR)

(2.30)

These cylindrical equations are dramatically simpler than their spherical counter-
parts, and are easily to numerically solve. The absorption spectra of gold cylinders
of various diameters in air are shown in figure 2.4.
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2.6 Propagating Surface Plasmon Polaritons in Thin

Metal Films

Maxwell’s equations in a linear isotropic, homogenous, non-magnetic medium with
no charge or current take a particularly simple differential form

∇ · E = 0 ∇× E = −∂B
∂t

(2.31)

∇ ·B = 0 ∇×B = ε
∂E

∂t
(2.32)

Solving (2.31) for the wave equations yields

∇2E− ε

c2
d2

dt2
E = 0 (2.33)

∇2B− ε

c2
d2

dt2
B = 0 (2.34)

Solutions to (2.33) include plane waves of the form Ae−i(kr−ωt) with frequency
ω and wave propagation vector k where k2 = ε2(ω)ω2

c2
. It can be seen that when

ε(ω) is negative, the propagation vector becomes imaginary and no propagating
modes in the metal exist. However, surface plasmon polaritons that are bound to
the metal surface are still valid solutions to Maxwell’s Equations in this regime and
are characterized by large localized electric, magnetic and polarization fields near
the surface that exponentially decay away from it. TM waves are sometimes called
p-polarized light in optics while TE waves are known as s-polarized light. At SPR,
the TM component of the incident wave couples with the metal surface to form a
propagating surface-plasmon polariton and is detected by a drastic reduction in the
TM reflected light [35].

Consider the following solution at the plane boundary interface of two media
where the surface normal is in the +z direction, the incident wave direction is in the
+y direction, the interface is at z = 0, and the dielectric constants above and below
the surface are εo and εi respectively. The real components of the dielectric constants
determine the validity of the solution while the imaginary components determine the
attenuation of the surface plasmon polariton.
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z ≥ 0

Ex = E0e
i(kx−ωt)e−z

q
k2−εo

ω2

c2

Ey = 0

Ez = ikE0

√
k2 − εo

ω2

c2
ei(kx−ωt)e−z

q
k2−εo

ω2

c2

z ≤ 0

Ex = E0e
i(kx−ωt)ez

q
k2−εi

ω2

c2

Ey = 0

Ez = −ikE0

√
k2 − εi

ω2

c2
ei(kx−ωt)ez

q
k2−εi

ω2

c2

These solutions satisfy the wave equations and propagate along the surface at z
= 0. However, additional constraints must be applied. First, the electric field must
exponentially decay away from the surface, which is true if:

√
k2 − εo

ω2

c2
> 0 and

√
k2 − εi

ω2

c2
> 0 (2.35)

Additionally, the tangential components of E and B at z = 0 must be equal to
ensure the continuity of the fields. E0 can be chosen arbitrarily to satisfy the electric
field requirements, while the B component equations will determine k and ω. The
magnetic field component equations are the same as those of the electric field with
an additional factor of ε, so

εo

√
k2 − εo

ω2

c2
> 0 and −εi

√
k2 − εi

ω2

c2
> 0 (2.36)

Solving for k and ω yields the following two equations.

k2 =
ω2

c2
εoεi
εo + εi

(2.37)

ω2 = (ck)2

(
1

εo
+

1

εi

)
(2.38)

Several conclusions can be drawn from these results. From (2.35) and (2.36),
εi < 0 and from (2.37), |εi| > |εo| for k to be real and the solution to be valid.
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Up to this point we have not made any assumptions about medium i or o. If we
let the former be air and the latter be a metal, then we can solve for the dispersion
relation in more detail. By plugging (2.1) into (2.37) for εi and solving for k, the
following momentum-frequency relation is obtained

k2 =
ω2

c2
εo(ω

2 − ω2
p)

ω2(εo + 1)− ω2
p

(2.39)

This contrasts with the dispersion relation for electromagnetic waves in a dielec-
tric medium with refractive index n(ω), k = ω2

c2
n2.

Through numerical solution it can be shown that the momentum of the surface
plasmon, ~ksp is greater than that of a photon of the same frequency, ~k0. In order
to generate coupled surface plasmon polaritons, the momentum of the photon and
surface mode must be matched. There are several techniques for doing so. The first is
to coat the thin metal film onto a high refractive index dielectric such as a prism. The
prism increases the momentum of the incident light by a factor of n, and when the
light strikes the thin film it will tunnel through, satisfying the momentum matching
condition at the interface on the opposite side of the light source at a specific angle
and will result in a propagating surface plasmon-polariton at that interface. The
second is to scatter the light from subwavelength surface defects to generate local
surface plasmons. The third, and oldest, technique is to use ruled metal gratings to
generate surface plasmons.

A propagating surface plasmon polariton generally is not radiative due to the mo-
mentum matching condition. There are two benefits to transferring electromagnetic
energy in the form of propagating surface plasmon-polaritons. First, energy can be
transferred via nanostructures that significantly smaller than the diffraction limit,
which is of important for producing photonic devices from silicon, which is currently
a heavily researched topic. The second benefit of using plasmonic wave guides is a
reduction in generated thermal energy due to radiative losses, which are negligible
from surface plasmon-polaritons due to the momentum matching conditions.

Surface plasmon-polaritons were first observed in thin metallic films in 1957, and
thin film systems continue to be an important topic with numerous applications
including optoelectronic waveguides and biological sensors [36]. Thin metal films are
generally functionalized and the binding of molecules can be detected as changes in
the incident angle that meets the momentum matching conditions.

As noted earlier, the imaginary component of the dielectric constant determines
the propagation length of the surface plasmon polariton. In a two-layer system it
has been found to be [37].
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δsp =
c

ω

(
ε′i + ε1
ε′iεo

) 3
2 (ε′i)

2

ε′′i
(2.40)

where εo is assumed to be purely real. Propagation lengths for silver are on the
order of 10-100 µm in the visible spectrum and can reach 1 mm in the near-infrared
[38].
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Chapter 3

Numerical Simulations

3.1 Software and Hardware Specifications

FEMLAB 3.1, a finite element analysis software package, and MATLAB 7.0, a sci-
entific programming environment, were used in all simulations. FEMLAB is specif-
ically designed to integrate with MATLAB through a programming interface that
uses the MATLAB programming language. A number of simulation environments
are included with FEMLAB including structural engineering, chemical engineering
and electromagnetism modules. Simulations with coupled interactions between mul-
tiple physical domains, called multiphysics simulations, are supported and readily
available. The simulations used in this paper were performed in both two and three
dimensions and the computational mesh in each situation was generated using tri-
angular elements and three-dimensional polyhedra, respectively. In both cases, the
simulations were run on a single 2Ghz Pentium 4 processor with 2 GB of memory,
60,000 mesh elements on average and several hundred thousand degrees of freedom
were typically used in each simulation. FEMLAB adaptively modified the mesh pa-
rameters to selectively reduce the element size at regions of high curvature to meet
user configured parameters.

In the optical simulations, the local field enhancement factor was calculated by
solving the two-dimensional Helmholtz equations within a rectangular domain of
varying size with low-reflection boundary conditions to minimize any anomalous
effects. The left-side of the computational domain emitted a transverse magnetic
polarized electromagnetic field of unit strength. The sharp-tips of the gold nanocre-
scent were filleted to a radius of .25 nm to avoid field singularities and accurately
model physical reality. All field retardation effects are fully realized in these sim-
ulations. Optical simulations were only performed in two dimensions because it is
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significantly more difficult to fillet the sharp tips in three dimensions and the simula-
tions would take at least an order of magnitude more time and memory to generate
comparably accurate results.

The optical responses of the various materials studied is encoded in their complex
dielectric functions. Interband electron transitions and other nonlinearities lead to
the requirement that accurate experimental data, rather than theoretical models,
be used for all numerical simulations. The experimental data collected by P.B.
Johnson and R. W. Christy from thin films for gold and silver, was utilized in all
optical simulations [31] and the iron optical data was taken from Weber [39] for the
multilayer nanocrescent.

In the magnetic simulations, both two-dimensional and three-dimensional com-
putational domains were used. A permanent bar magnet was situated relative to
the ferromagnetic core in the case of the three-dimensional simulations, and the
complete multilayer structure in the case of the two-dimensional simulations. The
strength of the magnet was adjusted to obtain the desired magnetic flux density
of approximately .1T, which corresponds to a relatively strong bar magnet. The
two-dimensional and three-dimensional Maxwell surface stress tensors were solved
for and integrated about the center of mass to calculate the torque and force vectors.
The relative permeability of the iron layer was assumed to be 5000.

As with the theoretical calculations, all numerical simulation source code is in-
cluded in the Appendix and additional information is provided there.

3.2 The Programming Interface

Although FEMLAB has an excellent graphical interface, setting up simulations using
the MATLAB programming interface has a number of benefits, including greater
speed, modularity, reproducibility and size. The computational of results, such as
the maximum electric field, can be automatically simulated and collected whereas the
graphical interface requires that both actions are performed manually, resulting in
a several orders of magnitude increase in speed in practice. Additionally, MATLAB
functions can be integrated into simulations for a more organized and object-oriented
simulation environment. Settings are easier to maintain and modify based upon
global variables using the programming interface and file sizes are on the order of
104 times smaller than the comparable files generated by the graphical interface due
to extra information that is stored. Additionally, parametric simulations that study
the effect of both geometry modifications and system parameters such as incident
wavelength are only available through the MATLAB programming interface.
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50 nm

Figure 3.1: The dipolar and quadripolar field profiles of the 200 nm outside diameter
gold nanocrescent in air.

In hindsight, the benefits of the programming interface over the graphical in-
terface are numerous and absolute and the decision to invest the time to learn the
programming language was an excellent one.

3.3 Nanocrescent Optical Properties

The plasmon resonance and local field enhancement (LFE) of the homogenous nanocre-
scent depends upon its geometric parameters and upon the electromagnetic proper-
ties of the material used. The nanocrescent structure has been fabricated as a com-
posite structure of multiple metal layers to demonstrate novel magnetic properties.
Additionally, the plasmon resonance and LFE depend upon the orientation of the
nanocrescent with respect to the incident light, being greatest when the light is po-
larized parallel to the sharp tips. The surface plasmon-polariton modes at both the
inside diameter and outside diameter can be excited, and they will be referred to as
the cavity and surface modes, respectively. The overall response of the nanocrescent
is the result of coupling between the cavity and surface modes, primarily at the sharp
tips via surface charges and short-range field interactions.
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Figure 3.2: Local Field Enhancement spectra for a 200 nm outside diameter gold
nanocrescent in various media.

The optical properties of the gold nanocrescent are useful for both biosensing
through plasmon resonance shifts and for SERS. As noted earlier, the field enhance-
ment of the gold nanoshell is on the order of 102, while simulations indicate that field
enhancement of the gold nanocrescent is on the order of 107 at dipolar resonance.
Experimental data for the nanocrescent structure indicates a LFE on the order of
106 based upon SERS signal enhancement [40].

The LFE spectra of a gold nanocrescent with 150 nm inside diameter, 200 nm
outside diameter and 72 nm nominal opening aperture diameter in a number of dif-
ferent media are plotted in figure 3.2. The shift of the dipolar resonance frequency
to longer wavelengths in media with higher dielectric functions can be seen. The
dipolar peak of the gold nanocrescent in water is at nearly 900 nm which is well
within the NIR window of biological systems and solutions. The resonance shift
shown is significantly greater than the shift expected from Mie theory in spherical
nanoparticles, shown in figure 2.3. The larger than expected shift reflects the in-
creased sensitivity of nanoplasmonic probes compared to colloidal nanoparticles and
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Figure 3.3: Local Field Enhancement spectra for 200 nm and 300 nm outside diam-
eter gold nanocrescents in gelatine.

their particular relevance to quantitative biology. Higher order peaks become clearly
visible in the water and gelatine solutions and they are at higher frequencies than
the dipolar mode as expected.

The electric field profiles of the 200 nm outside diameter nanocrescent in air at the
590 and 700 nm resonance peaks are shown in figure 3.1. The 700 nm peak is clearly a
dipolar mode, with a uniformly polarized cavity and field coupling between the sharp
tips. The more complicated field profile of the 590 nm peak can be interpreted as
the quadrupolar resonance mode. Surfaces where the plotted field streamlines begin
and end are charged because ∇ ·E 6= 0 at those points. The overall optical response
of the nanocrescent depends upon the various coupling mechanisms and is not as
easily interpreted as the well defined modes of spherical nanoparticles. In general,
nanoplasmonic probe designs are still immature both to their recent conception and
due to the variety of structures currently being explored.

The nanocrescent structure has not been thoroughly optimized to reduce the

38



width of the resonance peaks and increase their intensity. Only preliminary work
has been completed to shift the peaks further into the NIR biological window. The
ideal nanocrescent characteristics are different for the two modes of probe operation
discussed in this paper. A SERS probe requires the efficient absorption and transfor-
mation of incident energy into an enhanced local field. The essential characteristic
of a SERS probe is a large maximum field enhancement that is in the NIR window.
A nanoplasmonic probe for biological sensing and bioassays can be used to optically
detect changes in the local refractive index, indicative of changes in concentrations
of both free and bound biomolecules. The latter type of probe again requires a peak
in the NIR window, however scattered light is detected in this case and the probe
sensitivity depends upon the width of the peak, not necessarily upon its overall in-
tensity unless there is a significant amount of background noise. In both sensor roles
for the nanoplasmonic

The simulated nanocrescent has not been thoroughly optimized to reduce the
width of the resonance peaks and shift them further into the NIR biological window.
Qualitatively, two possible avenues to these goals would be to reduce the width of
the nanocrescent opening to increase the field coupling between them, which has
been reported to be a dominant characteristic of the nanocrescent geometry [41].
The opening width is controlled by the fabrication process and increasing the angle
of the substrate relative to the metal source during rotational deposition may be
possible.

The field enhancement spectra of two gold nanocrescents with 150 nm inside
diameter, 72 nm nominal opening aperture in gelatine with outside diameters of 200
nm and 300 nm are plotted in figure 3.3. Although the cavity modes and degree of
coupling between the sharp-tips are identical between both structures, the change
in the outside diameter dramatically modifies the resonance behavior of the 300
nm nanocrescent. The three nanocrescent geometric parameters are very closely
coupled, and the overall system is very sensitive to change. Modifications to the
nanocrescent geometry provide another pathway for the nanoplasmonic detection of
biochemical processes. Although these possibilities have not been explored by the
author, mechanical control systems for biological processes have been demonstrated,
including the allosteric control of the maltose enzyme [42].

To shift the resonance peaks to longer wavelengths, the inner and outer cavities
should be modified, however simulations have shown that they can not as a general
rule be increased or decreased to engineer the nanocrescent properties. The resonant
cavity and surface modes can be independently calculated using equations (2.21) and
(2.27), however the effect of the coupling has not been quantified. Based upon table
2.1, silver would be an ideal material to improve the plasmon resonance strength and
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Figure 3.4: Local field enhancement spectra for 300 nm outside diamter gold and
silver nanocrescents in gelatine.

width, however it is easily oxidized and is not a viable substrate for biocompatible
nanoplasmonic probes unless it is coated with a coherent biocompatible thin film.
Composite gold and silver nanocrescents have been investigated, however they have
not been optimized and results are not available yet.

As with modifications to the geometric parameters, the local field enhancement
spectra of silver and gold nanocrescents for the same geometry are drastically dif-
ferent as seen in figure 3.4. As with modifications to the geometric parameters, the
nanocrescent system is very sensitive to the electromagnetic properties of the base
material and the parametric optimization requires a significant amount of computing
power and time for good results. The dipolar peak in figure 3.4 occurs in silver at 700
nm and gold at 800 nm and in general the resonance peaks for silver nanoplasmonic
probes will be blue shifted relative to those of gold.

The four layer gold, iron, silver and gold nanocrescent, which will be discussed
in section 3.5, is shown being illuminated in air by a 780 nm electromagnetic wave
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Figure 3.5: The four layer gold, iron, silver, gold nanocrescent and gold
nanonanosphere with incident light from the left.

in figure 3.5. In 3.5a, the nanocrescent aperture is normal to the opening and the
maximum field enhancement is shown in the dB scale with the color bar on the right.
The nanocrescent is oriented at a forty-five degree angle to the incident wave in 3.5b,
and the field enhancement is significantly reduced and localized at the tips. A 150
nm diameter gold sphere is shown in 3.5c under the same conditions and the field
enhancement is dramatically reduced. The field enhancement of the sphere in 3.5c
resembles that of a dipole, which indicates that the contributions of the higher order
modes are negligible under these conditions.

3.4 Parametric Study of the Gold Nanocrescent

Absorption Peaks

Extensive simulations have been performed on the gold nanocrescent structure by
the author to empirically study the relationship between outside diameter, inside
diameter, clear aperture and both the excitation mode wavelengths and intensities.
The nanocrescent was considered to be in water for all simulations (εo = 1.79) and
50 equally spaced excitation wavelengths from 451 to 1088 nm were simulated. The
wavelength and value of the local field enhancement for the first three excited modes
was numerically calculated from the simulation data. The resonance peak width was
not quantified and will be studied in later work, although techniques for analyze the
spectral width of the absorption and scattering peaks are currently being developed
for another nanoplasmonic sensor research project by the author.

The first simulation study (Table 3.1) controlled the inside diameter for nanocre-

41



Table 3.1: Gold Nanocrescent Simulations - Results Summary

Outside Inside Clear Dipolar Quadrupolar Hexapolar
Dia. Dia. Apert. λ LFE λ LFE λ LFE

40
10 4.8 763 3.0e5 568 3.1e4 464 6.2e3
20 9.6 958 2.4e6 607 7.3e5 490 2.7e4
30 14.4 1088+ — 685 2.4e5 — —

60
15 7.2 841 1.4e6 581 7.0e4 503 9.1e3
30 14.4 1088+ — 646 5.0e5 — —
45 21.6 1088+ — 763 3.4e5 620 2.7e5

80
20 9.6 919 1.3e6 594 8.4e4 — —
40 19.2 1088+ — 685 2.9e5 581 5.6e4
60 28.8 1088+ — 815 2.4e5 646 4.9e5

100
25 12 997 5.3e5 607 3.9e5 — —
50 24 1088+ — 711 8.6e5 594 2.8e5
75 36 1088+ — 867 2.0e5 672 5.7e5

200
50 24 1088+ — 685 3.6e5 490 1.2e4
100 48 1088+ — 828 1.0e7 646 1.0e5
150 72 1088+ — 1049 1.8e6 802 5.3e5

scents with outside diameters ranging from 40 to 200 nm. The ratio of the inside
diameter to the clear aperture remained constant to maintain the ratio of tip cou-
pling to cavity size. As the inside diameter and clear aperture were increased the
modes generally shifted to longer wavelengths. The shift was noticeably greater for
the largest nanocrescents which can shift up to 400nm depending upon the cavity
size. It should be emphasized that the opening width is directly proportional to the
inside diameter and thus the relative intertip coupling is similar for the 200/50/24
and 100/50/24 or the 80/20/9.6 and 40/20/9.6 nanocrescents. However, the dipo-
lar and quadrupolar modes of the 40/20/9.6 nanocrescent are noticeably shifted to
longer wavelengths compared to the 80/20/9.6. Due to the negligible change in inter-
tip coupling between the various simulated nanocrescents the force behind the shift
must be related to the cavity and surface plasmon-polariton modes.

An increase in inside diameter is expected to red-shift the excitation modes how-
ever a reduction in outside diameter would be expected to blue-shift the modes if
the cavity and surface modes are independent and do not interact. Two poignant
examples of the red-shift with decreasing outside diameter can be seen when the
quadrupolar mode shifts from 646nm in the 60/30/14.4 nanocrescent to 685nm in the
40/30/14.4 nanocrescent and when it shifts from 685nm in the 200/50/24 nanocres-
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Table 3.2: Gold Nanocrescent Simulations - Detailed Results

Outside Inside Clear Dipolar Quadrupolar Hexapolar
Dia. Dia. Apert. λ LFE λ LFE λ LFE

200 50
12 1088+ — 698 2.1e5 503 2.9e4
24 1088+ — 685 3.6e5 490 1.2e4
48 1088+ — 620 3.7e7 490 1.0e5

200 75
18 789 5.9e5 620 2.5e5 516 4.2e4
36 750 2.4e5 607 9.3e4 490 1.1e4
72 659 8.6e5 477 4.7e3 451- —

200 100
24 867 9.3e5 659 4.2e5 503 3.5e4
48 828 1.0e7 646 3.0e6 490 1.0e5
96 724 1.9e7 607 7.6e5 503 3.4e4

200 125
30 958 2.5e5 724 1.2e5 646 7.3e4
60 919 2.5e7 711 9.4e6 633 4.6e6
120 802 9.2e5 659 1.7e5 594 4.8e4

200 150
36 1075 3.8e5 815 1.5e5 750 3.3e4
72 1049 1.8e6 802 5.3e5 698 1.0e6
144 906 5.5e5 737 1.9e5 633 1.9e5

200 175
42 1088+ — 906 2.5e6 776 2.7e6
84 1088+ — 932 1.4e6 802 2.0e6
168 1088+ — 854 2.8e6 737 8.7e6

cent to 711nm in the 100/50/24 nanocrescent.
There are two factors which contribute to the red-shift with a reduction in OD

or increase in ID. First, the overall wall thickness separating the cavity and outside
surface is reduced which allows the electromagnetic fields of the cavity and surface
modes to interact which shifts them to longer wavelengths and increases their inten-
sity. The skin depth of gold at 800 nm is on the order of 2 nm and is less at longer
wavelengths however some interaction is still to be expected between the inner and
outer surfaces of the nanocrescent [43] [44]. Although the energy contained in the
electromagnetic field is a maximum within the metal at the skin depth and decays
exponential at greater depths, the field is non-negliglble up to 30 nm within the
metal from the incident surface and allows the surface modes in the cavity and on
the surface to interact with one other. The other factor which supports an increase in
excitation mode wavelength is the increased coupling between the cavity and surface
modes at the tips based upon the thinner wall in that region. This view is sup-
ported by the existing understanding of the dominant nanocrescent electromagnetic
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properties [41].
For a fixed outside diameter, the largest field enhancement was generated when

the inside diameter was half the value of the outside diameter. However, the nanocre-
scent excitation modes shifted by up to several hundred nanometers toward the red
when the cavity diameter was on the order of the overall nanocrescent diameter. The
simulations demonstrate that the size of the polystyrene sphere template and thick-
ness of the deposited material significantly affect the spectral position and intensity
of the optically excited local electric field enhancement.

The 200nm nanocrescent was studied in more detail to determine the relationship
between the clear aperture and excitation eigenmode wavelengths and to identify any
clear empirical relationship between field enhancement and intertip coupling. While
the resonance peaks were red-shifted with increasing inside diameter as with the
previously noted simulation results, they shifted slightly towards shorter wavelengths
with increasing clear aperture. The blue-shift can be attributed to two different
factors. First, as the clear aperture increases for a fixed inside diameter the actual
cavity surface area becomes smaller because it is clipped at the nanocrescent tips.

The spectral widths of the nanocrescent resonance modes have not been rigorously
characterized at this time. However, preliminary data and graphical plots indicate
that the full width at half maximum of the nanocrescent dipole mode can be as small
as 5 nm. The sensitivity of the nanocrescent for SPR spectroscopy compared to the
gold nanoshell is orders of magnitude better. As noted earlier in the paper, the
full width at half maximum of single gold nanoshells is reported to vary from 1632
to 2298 nm. Further simulations and experiments are currently being planned to
better characterize the gold nanocrescent and other nanoplasmonic probes for SPR
spectroscopy, specifically by better measuring the spectral width of the resonance
peaks and their sensitivity to changes in the local dielectric function due to adsorbed
biomolecules.

In summary, the electromagnetic resonance peaks of the single layered gold nanocre-
scent can be tuned by controlling the geometric parameters during microfabrication.
The inside, outside and open aperture diameters are controlled by the diameter of
the polystyrene sphere template, the thickness of gold deposited and the deposition
angle. The surface mode frequency depends strongly upon electromagnetic field in-
teractions between the tips, the cavity and surface at the tips and the cavity and
surface modes throughout the rest of the nanocrescent. As with other nanoplas-
monic structures such as the nanoshell and nanoring, surface mode interactions lead
to lower frequency resonance peaks with reduced spectral width. The gold nanocres-
cent possesses a number of surface plasmon modes with higher order modes at higher
frequencies than the dipolar mode with generally lower local field enhancements. The
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highest field enhancement is generally at the outside surface of the nanocrescent near
the sharp tips which permits a spatial resolution on the order of tens of nanometers.
Numerical simulations indicate that the plasmon resonance peaks can be tuned from
500-1100 nm with local electric field enhancement factors of up to 107 with a narrow
spectral width for high sensitivity applications including SERS and label-free bioas-
says and sensors. Experiments confirm the simulation results with actual local field
enhancement factors of up to 106.

3.5 Magnetically Modulated Nanocrescent

The same fabrication process that is used to fabricate monolithic nanocrescent struc-
tures can be extended to multilayered structures and most metals. A magnetically
modulated, four-layer nanocrescent has been fabricated from the deposition of gold,
iron, silver and gold in that order on top of a monolayer of polystyrene beads. The
magnetically modulated has been experimentally proven as a useful SERS substrate
and publications are forthcoming [40]. Both gold and silver are diamagnetic, with
relative permeabilities slightly less than unity, while the relative permeability of elec-
tron gun deposited iron is on the order of 5000. The gold, iron, silver and gold layers
were 5, 10, 20 and 5 nm at maximum thickness. The ferromagnetic core was not
magnetized before experiments or simulations, but tended to align itself anti-parallel
to the magnet in both situations due to the asymmetric structure of the nanocre-
scent that places its center of mass away from the geometric center of a similarly
sized sphere. There is a complete discussion of the properties and applications of
the magnetically modulated nanocrescent in a paper by G. L. Liu et al. and this
discussion will primarily discuss simulation results [40].

Due to the complexity of the complete structure, three-dimensional simulations
were only performed on the iron core while two-dimensional simulations were per-
formed on the complete structure. In two dimensions, simulations were run on both
the iron core by itself and on the complete structure to discern the impact of the
diamagnetic shell on the generated torque. Results were practically indistinguishable
between the two sets of simulations and the effect of the diamagnetic shell was found
to be negligible.

The torque on the nanocrescent varies as the sine of the angle between the incident
magnetic field and the inward normal at the opening aperture, being zero at both
parallel and antiparallel alignment. However, as in the analogous situation of a
magnetic dipole in a uniform magnetic field, the antiparallel arrangement is unstable
and the perturbed system will tend to align itself to the magnetic field.
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Figure 3.6: Graphical representation of the nanocrescent alignment for maximum
torque, which is on the order of 10−19 N-m for the four-layer nanocrescent studied.

Magnetically modulated nanoplasmonic probes are of practical interest in self-
assembled SERS arrays and in the alignment of asymmetric nanostructures, such as
the nanocrescent, for optical signal generation [45] [46]. As noted earlier, the electric
field enhancement of the nanocrescent structure is dependent upon its orientation
with respect to the incident field. However, the primary reason that orientation
control is of interest in nanoplasmonic probes, and especially asymmetric probes,
is that the scattered field is a strong function of angle and can change with the
adsorption of surface molecules. By rotating the incident magnetic field the Raman
signal can be modulated to find the maximum signal-noise ratio.

The usefulness of simulations in the design of magnetically modulated nanoplas-
monic probes and predicting their performance is limited. Although the gravitational
and buoyancy forces on a probe suspended in a fluid are several orders of magnitude
smaller, forces such as surface tension, liquid viscosity and Van der Waals interac-
tions typically dominate at the nanometer scale and vary significantly based upon
geometry and surface topology.
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Chapter 4

Experiments

4.1 High Speed Spectral Imaging of Nanoplasmonic

Probe Arrays

Surface plasmon resonance sensors are widely used to detect and characterize the
biochemical dynamics of molecules immobilized on thin metallic films [47] [48] [49].
The abrupt change in in reflectance of p-polarized light at onset of SPR (see section
2.6) can be implemented with a synchronized light source and sensor that rotate
to find the characteristic angle, however this actuation technique is complicated,
difficult to miniaturize and can not be multiplexed. Additionally, SPR sensor arrays
with hundreds of test elements are currently the cutting edge of the technology,
while microarrays with up to 10,000 elements are required for effective proteomics
research [27]. Applications which conventional SPR sensor have been applied include
measuring reaction rates, concentrations and high throughput drug screening by
using large, lithographically patterned arrays on a solid substrate. The shift of the
plasmon resonance frequency in nanoplasmonic probes provides another pathway for
detection.

This semester I worked with a graduate researcher to implement a new, high
speed spectra imaging system that can characterize thousands of nanoplasmonic
probes within minutes, depending upon the wavelength band and spectral resolution
required. Our spectral imaging system has frame rates as high as .5 frames per
second and the spectroscopy of several thousand gold nanoparticles from 500 - 800
nm with a spectral resolution of 2 nm is demonstrated. Lithographically fabricated
microarrays are also of particular interest in biomolecular screening and other in vitro
applications, and the spectroscopy of a gold nanowire array is also demonstrated.
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Figure 4.1: A summary of the experimental setup used in our spectral imaging
system.

An overview of the experimental apparatus and procedure are shown (Fig. 4.1).
In the figure, the monochromator control unit (1) moves the diffraction grating (2)
to a set position to send a monochromatic light beam through the small exit slit
(3). The output beam is directed by a series of mirrors and lenses to the microscope
input, where it is passed through a beam expander and dark field condenser (4) onto
the specimens. Only the scattered light passes on to the imaging camera (5) which
takes a digital still image and passes the resulting black and white image to the
image processing unit (6). Images are taken at a series of wavelengths and analyzed
to produce scattering spectra of the specimens in the camera field of view.

Nanoplasmonic probe spectroscopy has been extensively studied in recent years
as another potential pathway for the characterization of single biomolecules. The
benefits of nanoplasmonic probe arrays over conventional SPR sensor arrays include
a significantly smaller required sample volume, a greater potential for miniaturization
and high throughput detection arrays, and greater sensitivity. However, nanoplas-
monic probe spectroscopy has previously been limited to several particles due to
limitations of the spectra imaging systems used. Previous systems have illuminated
the sampled with white light via a dark-field condenser and send the scattered light
into a monochromator and spectrometer in order to generate a scattering spectrum.
However, such systems are limited by the size of the entrance slit to the monochroma-
tor, which is on the order of several microns, and by the potential crosstalk between
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Figure 4.2: A true color image of the nanoparticle sample region analyzed.

adjacent nanoplasmonic probes which will render the generated spectrum useless.
Spectrally imaging thousands of probes in an array is simply not feasible due to the
human or computer intervention required to scan the sample stage to image each
individual particle, which can shift the imaging immersion fluid and require that the
microscope is refocused for each probe that is imaged. This raises questions regarding
the accuracy of data obtained from such systems due to alignment and focus issues,
but also due to the time span over required to image large arrays. Most biochemical
reactions of interest take a number of minutes to several hours to be completed,
however the discussed systems can take a significant fraction of that time to gener-
ate spectral image data which renders them useless in applications that require near
real-time sensing.

Our spectral imaging system uses a 100 W halogen lamp light source which sends
light into the monochromator via a narrow slit and is subsequently diffracted from
a blazed diffraction grating. The monochromator is controlled by a software control
unit that we wrote. The exit light beam has a spectral width of approximately 2
nm and a power density that varies from 100 - 300 µW

cm2nm
. As can be seen, there

are two mutual exclusive design goals in our system; to have a spectrally narrow
output beam from the monochromator and to have a high incident power density on
the nanoplasmonic probes being studied. Once the monochromatic beam enters the
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1 µm
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Figure 4.3: A scanning electron microscope (SEM) and true color image of the
nanowires analyzed.

microscope it is focused onto the sample, which is immersed in deionized water, via a
dark-field condenser. Dark-field condensers are designed such that the incident light
strikes the sample from an oblique angle and only the scattered light passes through
the objective lens and is detected by the camera. A 40x objective lens collects
the scattered light which is sent to a 512 x 512 pixel CCD imaging camera and
the data is formatted and saved by another software control unit for later analysis.
The monochromator and camera control units are integrated into a single software
package and are synchronized to capture a single image at each wavelength of interest.
There are a number of input parameters to our control system, including spectral
range, resolution and integration time, which determine the overall time required for
spectroscopy. The field of view of our microscopy system is on the order of 300 µm
x 300 µm and a 100 x 100 nanoplasmonic probe array could be clearly resolved and
analyzed by our demonstrated microscopy unit without any need for sample stage
scanning or complicated mechanical feedback control systems.

The experimental results for the gold nanoparticle and nanowire samples are
shown in figures ?? and 4.5. The gold nanoparticle sizes ranged between 20 and 80
nm, with plasmon resonance peaks falling in the visible spectrum from blue to red.
Three representative nanoparticles are shown and curbes from the data are plotted
with maximum scattering peaks in the green, yellow and red. The gold nanowires
were previously fabricated by a graduate researcher to demonstrate the resonance
tuning in one-dimensional nanostructures. The wire widths ranged between 20 and
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Figure 4.4: Experimental scattering spectra from the gold nanoparticle solution.

150 nm, with resonance peaks from the green to red. The spectral intensity of the red
nanowires were greater than the green nanowires due to their significantly greater
geometric cross section. The wires were imaged in oil and curves are plotted for wire
widths of 60, 80 and 120 nm with peaks in the green, orange and red, respectively.

The diffraction grating and camera are controlled by software written in LabView
and run from a desktop PC connected to our equipment via serial connections. Data
analysis was performed in MATLAB and data visualization was performed in Orig-
inPro. Image data is collected at each wavelength as an uncompressed, grayscale,
16-bit unsigned integer TIF and analyzed in MATLAB as a two-dimensional integer
array. No noise reduction or smoothing algorithms are applied to the image data
before analysis. The mean intensity of the image bright spots, which are typically
only several pixels, is extracted at each wavelength and stored as the raw scattering
spectra. The mean intensity value in a large, empty region is also extracted at each
wavelength to serve as the background reference spectrum. The difference between
the two spectra is inversely scaled by the light source spectrum to account for the
variation in intensity in the light source spectrum. Using a high quality xenon lamp
would render this last step unnecessary.

Our spectral imaging system demonstrates the feasibility of using nanoplasmonic
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Figure 4.5: Experimental scattering spectra for 60, 80 and 120 nm wide gold
nanowires.

probe arrays in very high throughput applications that require real-time or near
real-time data, such as monitoring biochemical processes on the cellular level. The
imaging times demonstrated are on the order of 5 minutes, which is several times
better than other nanoplasmonic probe spectral imaging systems. By reducing the
spectral resolution or range, which is acceptable when fabricated nanoplasmonic
probes with well controlled resonance peaks are used, the speed could be increased
significantly and real-time optical analysis of nanoplasmonic probe arrays could be-
come a reality. Our system has significant potential for miniaturization, multiplexed
sensing with a single illumination source and integration into microfluidic analysis
systems for fields that require data with high statistical confidence, repeatability and
parameter control such as proteomics.
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Chapter 5

Future Goals

I have spent the past two semesters focusing almost purely upon learning theory and
developing a finite element method programming framework for rapidly characteriz-
ing and optimizing the optical features of nanoplasmonic probes. Two papers that
I have collaborated on are in the process of being submitted to journals and I hope
to write a paper of my own on the topic of numerical simulations of nanocrescents
and nanodot arrays for SERS and SPR spectroscopy. In my senior year I hope to
design and perform more experiments and focus on bionanophotonics applications
with well defined goals and presentable results. In general, my current research in-
terests are in developing new laboratory tools and methods for biological analysis,
with the ultimate goal of understanding the biochemical dynamics of the cell at the
molecular level. I plan to graduate from UC Berkeley in the spring of 2006 with a
B.S. in Mechanical Engineering and will apply to graduate school with an emphasis
in systematic bioengineering with an emphasis on applied physics and quantitative
biological sciences.

In the coming year I hope to focus on refining our spectral imaging analytical
technique through experiments with microfluidic channel arrays and on the devel-
opment of refined nanoplasmonic probes through numerical simulation and experi-
mental demonstration. First, I would like to demonstrate the ability of the spectral
imaging technique in conjunction with simple nanoplasmonic probes to detect the
adsorption of specific biomolecules in solution. I am currently performing rigorous
simulations characterizing the SPR spectroscopic properties of two dimensional gold
nanodot arrays. The simulations have two purposes. First, they will be used to de-
sign a nanodot substrate that can fabricated using electron beam lithography for my
SPR spectroscopy experiments. Also, the simulation results will form a solid basis
to write a paper on the unique electromagnetic properties of gold nanodot substrates
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for SERS and SPR spectroscopy. As an extension of that concept, I would like to
demonstrate the detection of conformational changes of adsorbed species after the
introduction of enzymes at concentrations comparable to commercial SPR sensors
with higher throughput, faster response and better automation capabilities.

In the realm of more advanced nanoplasmonic probes with narrow plasmon res-
onances and high local field enhancement, I would like to do several things. First,
I would like to develop an optimized silver core, gold shell nanocrescent with an
improved field enhancement in the NIR for in vivo SERS. Next, I want to develop
a new nanoplasmonic probe geometry for production via top-down nanofabrication
processes based upon basic theory and simulation results. Finally, and most im-
portantly, I would like to integrate existing nanoplasmonic probes into arrays that
take advantage of our very high throughput, automated, label-free spectral imag-
ing system to demonstrate the immediate utility of the technology in studying the
biochemical dynamics of the cell.
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Appendix A

Theoretical Calculations Code

All code in the appendix is available under the GNU Free Documentation License 1.2
and is free to be modified and distributed within the limits of that license. Basically,
you can modify and distribute all of this code with the restrictions that you give credit
when due and that you distribute any modifications that you make to the source
code whenever possible. All code is original, except for three functions posted on
the internet by Dave Barnett from the Optical Engineering Group at Loughborough
University circa 1996, which were used to calculate the Mie coefficients for spherical
nanoparticles. I would appreciate feedback, even if you just say that the code was
useful to you, and I would be happy to answer any questions or fix any errors that
are found. You can contact me at jcdoll at gmail dot com.

The numerical simulation code must be run from the MATLAB command line
after starting up the FEMLAB with MATLAB software package for full functionality.
It may be opened directly from within FEMLAB so that you can view the geometry
and extract images. However, MATLAB expressions will not be evaluated and before
doing so you may want to set the number of iterations within the code to one and
set the parameters to the values desired in order to reduce the time required.

This paper was written in TeXShop 1.35 and 2.0 on Mac OS X, which uses LaTeX
for formatting and pdfLaTeX to output into .pdf format. LaTeX was installed using
Fink and Fink Commander. The bibliography was produced in BibTeX. Adobe
Illustrator was used to create and edit many figures, which were exported from
FEMLAB as uncompressed .tif’s and from MATLAB as .pdf’s.

A.1 OpticalData.m

%{
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Joseph Doll

OpticalData.m

Parameters:

lambda_start = Wavelength that output will start at, inclusive

lambda_end = Wavelength that output will end at, inclusive

lambda_step = Length of output vector, matl_eps

matl = Integer that indicates the output material.

1 = Gold, 2 = Silver, 3 = Iron

Return Values:

matl_eps = Vector of length lambda_step with the interpolated

dielectric function.

matl_n = Vector of length lambda_step with the interpolated

complex refractive index.

%}

function [matl_eps, matl_n] = OpticalData(lambda_start, ...

lambda_end, lambda_step, matl)

%---Constants-------

h = 4.136e-15; % planck’s constant in units of eV

c = 3e8; % speed of light

%-------------------

% Silver and Gold Optical Data: extends from 451nm through 1088nm.

eV_jc = [2.75 2.63 2.50 2.38 2.26 2.13 2.01 1.88 1.76 1.64 1.51 ...

1.39 1.26 1.14];

wavelength_data_jc = h*c./eV_jc;

% Complex optical constants for Gold

au_n = [1.38 1.31 1.04 0.62 0.43 0.29 0.21 0.14 0.13 0.14 0.16 ...

0.17 0.22 0.27];

au_k = [1.914 1.849 1.833 2.081 2.455 2.863 3.272 3.697 4.103 ...

4.542 5.083 5.663 6.350 7.150];

% Complex optical constants for Silver

ag_n = [.04 .05 .05 .05 .06 .05 .06 .05 .04 .03 .04 .04 .04 .04];

ag_k = [2.657 2.869 3.093 3.324 3.856 3.858 4.152 4.483 4.838 ...

5.242 5.727 6.312 6.992 7.795];
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% Iron Optical Data: extends from 443nm through 1128nm.

eV_fe = [2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 ...

1.4 1.3 1.2 1.1];

wavelength_data_fe = h*c./eV_fe;

% Complex optical constants for Iron

fe_n = [2.12 2.23 2.34 2.46 2.56 2.65 2.74 2.80 2.85 2.89 2.92 ...

2.98 3.00 3.05 3.12 3.16 3.24 3.33];

fe_k = [3.23 3.25 3.30 3.31 3.31 3.34 3.33 3.34 3.36 3.37 3.46 ...

3.52 3.60 3.77 3.87 4.07 4.26 4.52];

% Calculate n and the dielectric constant (epsilon) for

au_cn = au_n + i*au_k;

au_eps = au_cn.^2;

ag_cn = ag_n + i*ag_k;

ag_eps = ag_cn.^2;

fe_cn = fe_n + i*fe_k;

fe_eps = fe_cn.^2;

% Interpolation

lambda = linspace(lambda_start, lambda_end, lambda_step);

au_eps_r = interp1(wavelength_data_jc, real(au_eps), lambda, ’spline’);

au_eps_i = interp1(wavelength_data_jc, imag(au_eps), lambda, ’spline’);

au_n_r = interp1(wavelength_data_jc, real(au_cn), lambda, ’spline’);

au_n_i = interp1(wavelength_data_jc, imag(au_cn), lambda, ’spline’);

ag_eps_r = interp1(wavelength_data_jc, real(ag_eps), lambda, ’spline’);

ag_eps_i = interp1(wavelength_data_jc, imag(ag_eps), lambda, ’spline’);

ag_n_r = interp1(wavelength_data_jc, real(ag_cn), lambda, ’spline’);

ag_n_i = interp1(wavelength_data_jc, imag(ag_cn), lambda, ’spline’);

fe_eps_r = interp1(wavelength_data_fe, real(fe_eps), lambda, ’spline’);

fe_eps_i = interp1(wavelength_data_fe, imag(fe_eps), lambda, ’spline’);

fe_n_r = interp1(wavelength_data_fe, real(fe_cn), lambda, ’spline’);

fe_n_i = interp1(wavelength_data_fe, imag(fe_cn), lambda, ’spline’);

% Calculate the complex dielectric constants for the wavelengths of

% excitiation that we are interested in.
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au_eps = au_eps_r + i*au_eps_i;

au_n = au_n_r + i*au_n_i;

ag_eps = ag_eps_r + i*ag_eps_i;

ag_n = ag_n_r + i*ag_n_i;

fe_eps = fe_eps_r + i*fe_eps_i;

fe_n = fe_n_r + i*fe_n_i;

if (matl == 1)

matl_eps = au_eps;

matl_n = au_n;

elseif (matl == 2)

matl_eps = ag_eps;

matl_n = ag_n;

elseif (matl == 3)

matl_eps = fe_eps;

matl_n = fe_n;

end;

A.2 ElectrostaticSpectra.m

%{

Joseph Doll

ElectrostaticSpectra.m

Plot the absorption spectrum of 20 nm diameter metallic

nanoparticles immersed in numerous media to illustrate

the resonance wavelength shift that can form the basis

of the nanoplasmonic probes.

%}

clf;

FEMLAB 3.1 simulation to calculate the maximum local electric field

lambda = linspace(451e-9,1088e-9,500);

% Dielectric function of the immersing medium

eps_o1 = 1; % Air
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eps_o2 = 1.7875; % Water

eps_o3 = 2.37; % Gelatine

% Dielectric function of the metallic nanoparticle

eps_i = OpticalData(451e-9,1088e-9,500,1);

% Radius of the metal nanoparticle

R = 10e-9;

% Calculate the extinction cross sections per Kreibig

sigma_e1 = (54*pi^2./lambda).*(eps_o1^1.5*R^3.*imag(eps_i))./ ...

((real(eps_i)+2*eps_o1).^2 + imag(eps_i).^2);

sigma_e2 = (54*pi^2./lambda).*(eps_o2^1.5*R^3.*imag(eps_i))./ ...

((real(eps_i)+2*eps_o2).^2 + imag(eps_i).^2);

sigma_e3 = (54*pi^2./lambda).*(eps_o3^1.5*R^3.*imag(eps_i))./ ...

((real(eps_i)+2*eps_o3).^2 + imag(eps_i).^2);

hold on;

plot(lambda, sigma_e1, ...

lambda, sigma_e2, ...

lambda, sigma_e3);

legend(’Air’,’Water’,’Gelatine’);

ylabel(’Extinction Cross Section’);

xlabel(’Wavelength (m)’);

axis([451e-9 600e-9 0 3e-16]);

hold off;

A.3 SphereSpectra.m

%{

Joseph Doll

SphereSpectrum.m

Plots the scattering and absorption efficiencies for a cylinder immersed

in an outer medium. The optical properties of both materials can

be specified. Gold, silver and iron data is accessed from OpticalData.m

from 451 - 1088 nm. Incident light is TM polarized and only TM polariton

modes are excited.

%}

59



clf;

% Radius of the cylinder (m)

radius = 10e-9;

% Wavelengths that will be plotted

lambda = linspace(451e-9, 1088e-9, 100);

%Dielectric function outside the cylinder

eps_o = 2.37;

n_o = sqrt(eps_o);

% Dielectric function inside the cylinder

[eps_i, n_i] = OpticalData(451e-9, 1088e-9, 100, 1);

% Wave number inside the cylinder

k_i = 2*pi.*sqrt(eps_i)./lambda;

% Wave number outside the cylinder

k_o = 2*pi.*sqrt(eps_o)./lambda;

% Initialize the summation variables

Q_s = [];

Q_a = [];

% For each wavelength...

for ii = [1:length(lambda)]

% Initialize our summation variables

Sum_e = 0;

Sum_s = 0;

l_max = 50;

% x = k_o*radius, m = = n_i/n_o = sqrt(eps_i)/sqrt(eps_o)

% ScatCoef from Dave Barnett, Loughborough University

[a,b] = ScatCoef(real(n_i(ii))./n_o, k_o(ii)*radius, l_max);
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% Calculate the values of the summations

for l = 1:l_max,

Sum_s = Sum_s + (2*l + 1)*(abs(a(l))^2 + abs(b(l))^2);

Sum_e = Sum_e + (2*l + 1)*(real(a(l) + b(l)));

end

% Append the scattering efficiency at this wavelength

Q_s = [Q_s 2./(k_o(ii)*radius)^2*Sum_s];

Q_a = [Q_a -2./(k_o(ii)*radius)^2*(Sum_e + Sum_s)];

end

% Plot!

hold on;

plot(lambda, abs(Q_s),’r-’);

plot(lambda, abs(Q_a),’b-’);

legend(’Scattering Efficiency’,’Absorption Efficiency’);

xlabel(’Wavelength (m)’);

ylabel(’Effective Cross Section’);

hold off;

% ScatCoef Scattering coefficients

% [a,b]=ScatCoef(m,x,nmax)

% returns the two column vectors a and b containing

% the scattering coefficients for particles of size x

% and refractive index relative to medium m, from n=1

% to n=nmax.

% Written by and copyright

% Dave Barnett

% Optical Engineering Group

% Dept. of Electrical and Electronic Engineering

% Loughborough University

% 20th November 1996

% Corrected 4th September 1997

% m missing from calculation of dphim

% 5th September 1997
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% computation method optimised by use of vector methods

function [a,b] = ScatCoef(m,x,nmax)

N = (1:nmax)’;

phi = RB1(x, nmax);

phim = RB1(m*x, nmax);

zeta = RB2(x, nmax);

xi = phi + i * zeta;

phin_1 = [sin(x);phi(1:nmax-1)];

phimn_1 = [sin(m*x);phim(1:nmax-1)];

zetan_1 = [-cos(x);zeta(1:nmax-1)];

dphi = phin_1-N.*phi/x;

dphim = phimn_1-N.*phim/(m*x);

dzeta = zetan_1-N.*zeta/x;

dxi = dphi + i * dzeta;

a = (m*phim.*dphi - phi.*dphim) ./ (m*phim.*dxi - xi.*dphim);

b = (phim.*dphi - m*phi.*dphim) ./ (phim.*dxi - m*xi.*dphim);

% RB1 the Ricatti-Bessel function of the first kind

% RB1(rho, nmax) for the value rho from n=1 to n=nmax.

% Written by and copyright

% Dave Barnett

% Optical Engineering Group

% Dept. of Electrical and Electronic Engineering

% Loughborough University

% 20th November 1996

function phi = RB1(rho, nmax)

nst = ceil(nmax + sqrt(101+rho));

phi(nst,1) = 0;

phi(nst-1,1) = 1e-10;

for n=nst-2:-1:1

phi(n,1) = (2*n+3)*phi(n+1)/rho - phi(n+2);

end

phi0 = 3*phi(1)/rho - phi(2);

phi0 = sin(rho)/phi0;

phi = phi(1:nmax,:) * phi0;
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% RB2 the Ricatti-Bessel function of the second kind

% RB2(rho, nmax) for the value rho from n=1 to n=nmax.

% Written by and copyright

% Dave Barnett

% Optical Engineering Group

% Dept. of Electrical and Electronic Engineering

% Loughborough University

% 20th November 1996

function zeta = RB2(rho, nmax)

zeta(1,1) = -cos(rho)/rho - sin(rho);

zeta(2,1) = 3*zeta(1)/rho + cos(rho);

for n=3:nmax

zeta(n,1) = (2*n-1)*zeta(n-1)/rho - zeta(n-2);

end
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Appendix B

Numerical Simulations Code

B.1 OpticalOneLayer.m

% Joseph Doll

% OpticalOneLayer.m

% FEMLAB 3.1 simulation to calculate the maximum local electric field

% enhancement for a gold or silver nanocrescent of arbitrary ID, OD,

% and opening width immersed in a low absorption dielectric medium of

% arbitrary dielectric constant.

flclear fem

clear vrsn

vrsn.name = ’FEMLAB 3.1’;

vrsn.ext = ’’;

vrsn.major = 0;

vrsn.build = 157;

vrsn.rcs = ’$Name: $’;

vrsn.date = ’$Date: 2004/11/12 07:39:54 $’;

fem.version = vrsn;

% -------------------------------------------------------------

% -------------- Start Geometry Initialization ----------------

% -------------------------------------------------------------

% Nominal opening width between tips (increased by fillet)

nc_open = 72e-9;
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% Angle to rotate the nanocrescent for simulation

theta = 0;

% Radii of circles that define the nanocrescent layers

nc_outer = 100e-9;

nc_inner = 75e-9;

% Note that the circles will be shifted later, so thicknesses

% here are not exact.

% Calculate the horizontal displacement of each ellipse based

% upon the dimensions noted above (radii and opening widths)

nc_outer_x = 0;

nc_outer_y = 0;

nc_inner_x = -((nc_outer - nc_inner) + ...

(nc_inner*(1-cos(asin(nc_open/(2*nc_inner))))) - ...

(nc_outer*(1-cos(asin(nc_open/(2*nc_outer))))));

nc_inner_y = 0;

% -------------------------------------------------------------

% ------------- Start Geometry Creation in Femlab -------------

% -------------------------------------------------------------

% Define the ellipses based upon the calculated dimensions

g1=ellip2(nc_outer,nc_outer,’base’,’center’,’pos’, ...

[nc_outer_x,nc_outer_y],’rot’,’0’);

g5=ellip2(nc_inner,nc_inner,’base’,’center’,’pos’, ...

[nc_inner_x,nc_inner_y],’rot’,’0’);

% Define the environment bound rectangle

bound_rect = rect2(’4e-6’,’2e-6’,’base’,’center’, ...

’pos’,{’0’,’0’},’rot’,’0’);

% Boolean operations to create the "sharp structures"

sharp_nc = geomcomp({g1,g5},’ns’,{’g1’,’g5’},’sf’, ...

’g1-g5’,’edge’,’none’);
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% Fillets

round_nc = fillet(sharp_nc,’radii’,2.5E-10,’point’,[1 2]);

% Rotate the finished nanocresent

nanocrescent = rotate(round_nc, theta ,[0,0]);

clear s

s.objs = {nanocrescent, bound_rect};

s.name={’NC’,’BR’};

s.tags={’nanocrescent’,’boundrect’};

fem.draw=struct(’s’,s);

fem.geom=geomcsg(fem);

% -------------------------------------------------------------

% ------------------ Start Simulation Loop --------------------

% -------------------------------------------------------------

% Vector of the max electric field at each wavelength

emax = [];

% The wavelengths we are solving at

lambda = linspace(451e-9,1088e-9,1);

% Generate the dielectric function data

eps_i = OpticalData(451e-9,1088e-9,1,1);

eps_o = 1;

for ii = 1 : length(lambda),

fem.const={’eps_i’,eps_i(ii),’eps_o’,eps_o};

clear appl

appl.mode.class = ’InPlaneWaves’;

appl.module = ’CEM’;

appl.assignsuffix = ’_wh’;

% Solve via input wavelength
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clear prop

prop.field=’TM’;

prop.inputvar=’lambda’;

appl.prop = prop;

% Set the boundary conditions

clear bnd

bnd.H0 = {{0;0;1},{0;0;0},{0;0;0}};

bnd.type = {’NR’,’cont’,’NR’};

bnd.ind = [1,3,3,3,2,2,2,2,2,2,2,2,2,2];

appl.bnd = bnd;

% Set the domain variables

clear equ

equ.epsilonr = {’eps_o’,’eps_i’};

equ.ind = [1,2];

appl.equ = equ;

% Set the current wavelength

appl.var = {’nu’,’1e9’,’lambda0’,lambda(ii)};

fem.appl{1} = appl;

fem.border = 1;

fem=multiphysics(fem);

% Mesh initialize parameters, smaller = finer

fem.mesh=meshinit(fem, ...

’hmaxfact’,.8, ...

’hcurve’,0.15, ...

’hgrad’,1.15, ...

’hcutoff’,0.001);

fem.xmesh=meshextend(fem);

fem.sol=femlin(fem, ...

’solcomp’,{’Hz’}, ...

’outcomp’,{’Hz’});
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% posteval returns the electric field at each point

eii_struct = posteval(fem,’10*log10(normE_wh/450)’,’dl’,[1]);

% Take the maximum field value and add it to emax

eii_max = max(eii_struct.d);

emax = [emax eii_max];

end

% Clean up all of our loose ends

save opticalData emax lambda;

clear;

load opticalData;

B.2 OpticalFourLayer.m

%{

Joseph Doll

OpticalFourLayer.m

FEMLAB 3.1 simulation to calculate the maximum local electric field

enhancement for a four layer gold, iron, silver, gold nanocrescent

of arbitrary ID, OD, layer thickness and opening width in a low

absorption dielectric medium of arbitrary dielectric constant.

%}

flclear fem

clear vrsn

vrsn.name = ’FEMLAB 3.1’;

vrsn.ext = ’’;

vrsn.major = 0;

vrsn.build = 157;

vrsn.rcs = ’$Name: $’;

vrsn.date = ’$Date: 2004/11/12 07:39:54 $’;

fem.version = vrsn;

% -------------------------------------------------------------

% -------------- Start Geometry Initialization ----------------

% -------------------------------------------------------------
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% Nominal opening width between tips (increased by fillet)

nc_open = 72e-9;

fe_open = 70e-9;

ag_open = 72e-9;

% Radii of circles that define the nanocrescent layers

nc_outer = 95e-9;

nc_inner = 75e-9;

ag_outer = nc_outer - (5/40)*(nc_outer - nc_inner);

fe_outer = ag_outer - (20/40)*(nc_outer - nc_inner);

fe_inner = fe_outer - (10/40)*(nc_outer - nc_inner);

% Note that the circles will be shifted later, so thicknesses

% here are not exact.

% Calculate the horizontal displacement of each ellipse based

% upon the dimensions noted above (radii and opening widths)

nc_outer_x = 0;

nc_outer_y = 0;

ag_outer_x = -((nc_outer - ag_outer) + ...

(ag_outer*(1-cos(asin(ag_open/(2*ag_outer))))) - ...

(nc_outer*(1-cos(asin(ag_open/(2*nc_outer))))));

ag_outer_y = 0;

fe_outer_x = -((nc_outer - fe_outer) + ...

(fe_outer*(1-cos(asin(fe_open/(2*fe_outer))))) - ...

(nc_outer*(1-cos(asin(fe_open/(2*nc_outer))))));

fe_outer_y = 0;

fe_inner_x = -((nc_outer - fe_inner) + ...

(fe_inner*(1-cos(asin(fe_open/(2*fe_inner))))) - ...

(nc_outer*(1-cos(asin(fe_open/(2*nc_outer))))));

fe_inner_y = 0;

nc_inner_x = -((nc_outer - nc_inner) + ...

(nc_inner*(1-cos(asin(nc_open/(2*nc_inner))))) - ...

(nc_outer*(1-cos(asin(nc_open/(2*nc_outer))))));
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nc_inner_y = 0;

% -------------------------------------------------------------

% ------------- Start Geometry Creation in Femlab -------------

% -------------------------------------------------------------

% Define the ellipses based upon the calculated dimensions

g1=ellip2(nc_outer,nc_outer,’base’,’center’,’pos’, ...

[nc_outer_x,nc_outer_y],’rot’,’0’);

g2=ellip2(ag_outer,ag_outer,’base’,’center’,’pos’, ...

[ag_outer_x,ag_outer_y],’rot’,’0’);

g3=ellip2(fe_outer,fe_outer,’base’,’center’,’pos’, ...

[fe_outer_x,fe_outer_y],’rot’,’0’);

g4=ellip2(fe_inner,fe_inner,’base’,’center’,’pos’, ...

[fe_inner_x,fe_inner_y],’rot’,’0’);

g5=ellip2(nc_inner,nc_inner,’base’,’center’,’pos’, ...

[nc_inner_x,nc_inner_y],’rot’,’0’);

% Define the environment bound rectangle

bound_rect = rect2(’4e-6’,’2e-6’,’base’,’center’, ...

’pos’,{’0’,’0’},’rot’,’0’);

% Boolean operations to create the "sharp structures"

sharp_nc = geomcomp({g1,g5},’ns’,{’g1’,’g5’},’sf’, ...

’g1-g5’,’edge’,’none’);

sharp_ag = geomcomp({g2,g3},’ns’,{’g2’,’g3’},’sf’, ...

’g2-g3’,’edge’,’none’);

sharp_fe = geomcomp({g3,g4},’ns’,{’g3’,’g4’},’sf’, ...

’g3-g4’,’edge’,’none’);

% Fillets

round_nc = fillet(sharp_nc,’radii’,5.0E-10,’point’,[1 2]);

round_ag = fillet(sharp_ag,’radii’,3.5E-10,’point’,[1 2]);

round_fe = fillet(sharp_fe,’radii’,2.5E-10,’point’,[1 2]);

% Combine the geometry into a single final structure

nc_struct = geomcomp({round_nc,round_fe,round_ag},’ns’, ...
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{’CO1’,’CO2’,’CO3’},’sf’,’CO1+CO2+CO3’,’edge’,’none’);

% Rotate the finished nanomoon through the angle theta

nanocrescent = rotate(nc_struct, -pi ,[0,0]);

clear s

s.objs = {nanocrescent, bound_rect};

s.name={’NC’,’BR’};

s.tags={’nanocrescent’,’boundrect’};

fem.draw=struct(’s’,s);

fem.geom=geomcsg(fem);

% -------------------------------------------------------------

% ------------------ Start Simulation Loop --------------------

% -------------------------------------------------------------

emax = [];

lambda = linspace(451e-9,1088e-9,100);

eps_au = OpticalData(451e-9,1088e-9,100,1);

eps_ag = OpticalData(451e-9,1088e-9,100,2);

eps_fe = OpticalData(451e-9,1088e-9,100,3);

eps_o = 1;

for ii = 1 : length(lambda),

fem.const={’eps_au’,au_eps(ii),’eps_ag’,ag_eps(ii), ...

’eps_fe’,fe_eps(ii),’eps_o’,eps_o};

clear appl

appl.mode.class = ’InPlaneWaves’;

appl.module = ’CEM’;

appl.assignsuffix = ’_wh’;

clear prop

prop.field=’TM’;

prop.inputvar=’lambda’;

appl.prop = prop;

clear bnd
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bnd.H0 = {{0;0;0},{0;0;1},{0;0;0}};

bnd.type = {’cont’,’NR’,’NR’};

bnd.ind = [2,3,3,3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

1 1 1 1 1 1 1 1 1 1 1];

appl.bnd = bnd;

clear equ

equ.epsilonr = {’eps_o’,’eps_au’,’eps_ag’,’eps_fe’};

equ.mur = {1,1,1,5000};

equ.ind = [1,2,3,4];

appl.equ = equ;

appl.var = {’nu’,’1e9’,’lambda0’,lambda(ii)};

fem.appl{1} = appl;

fem.border = 1;

fem=multiphysics(fem);

fem.mesh=meshinit(fem, ...

’hmaxfact’,1.4, ...

’hgrad’,1.2, ...

’hcurve’,0.15, ...

’hcutoff’,0.000001);

fem.xmesh=meshextend(fem);

fem.sol=femlin(fem, ...

’solcomp’,{’Hz’}, ...

’outcomp’,{’Hz’});

% posteval returns the electric field at each point

eii_struct = posteval(fem,’10*log10(normE_wh/450)’,’dl’,[1]);

% Take the maximum field value and add it to emax

eii_max = max(eii_struct.d);

emax = [emax eii_max];

end

% Clean up all of our loose ends

save opticalData emax lambda;
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clear;

load opticalData;

B.3 OpticalSphere.m

%{

Joseph Doll

OpticalSphere.m

FEMLAB 3.1 simulation to calculate the maximum local electric field

enhancement for a gold or silver sphere of arbitrary radius immersed

in a low absorption dielectric medium of arbitrary dielectric constant.

%}

flclear fem

clear vrsn

vrsn.name = ’FEMLAB 3.1’;

vrsn.ext = ’’;

vrsn.major = 0;

vrsn.build = 157;

vrsn.rcs = ’$Name: $’;

vrsn.date = ’$Date: 2004/11/12 07:39:54 $’;

fem.version = vrsn;

% -------------------------------------------------------------

% -------------- Start Geometry Initialization ----------------

% -------------------------------------------------------------

% Sphere radius

radius = 75e-9;

% Define the ellipses based upon the calculated dimensions

g5 = ellip2(radius,radius,’base’,’center’,’pos’,{’0’,’0’}, ...

’rot’,’0’);

% Define the environment bound rectangle

bound_rect = rect2(’4e-6’,’2e-6’,’base’,’center’,’pos’, ...

{’0’,’0’},’rot’,’0’);
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clear s

s.objs = {g5, bound_rect};

s.name={’SP’,’BR’};

s.tags={’sphere’,’boundrect’};

fem.draw=struct(’s’,s);

fem.geom=geomcsg(fem);

% Vector of the max electric field at each wavelength

emax = [];

% The wavelengths we are solving at

lambda = linspace(451e-9,1088e-9,41);

% Generate the dielectric function data

eps_i = OpticalData(451e-9,1088e-9,41,1);

eps_o = 1;

% -------------------------------------------------------------

% ------------------ Start Simulation Loop --------------------

% -------------------------------------------------------------

% Iterate and simulate at each wavelength

for ii = 1 : length(lambda),

fem.const={’eps_i’,eps_i(ii),’eps_o’,eps_o};

clear appl

appl.mode.class = ’InPlaneWaves’;

appl.module = ’CEM’;

appl.assignsuffix = ’_wh’;

clear prop

prop.field=’TM’;

prop.inputvar=’lambda’;

appl.prop = prop;

clear bnd

bnd.H0 = {{0;0;0},{0;0;1},{0;0;0}};

bnd.type = {’cont’,’NR’,’NR’};
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bnd.ind = [2,3,3,3,1,1,1,1];

appl.bnd = bnd;

clear equ

equ.epsilonr = {’eps_o’,’eps_i’};

equ.ind = [1,2];

appl.equ = equ;

appl.var = {’nu’,’1e9’,’lambda0’,lambda(ii)};

fem.appl{1} = appl;

fem.border = 1;

% Multiphysics

fem=multiphysics(fem);

% Initialize mesh

fem.mesh=meshinit(fem, ...

’hmaxfact’,.3, ...

’hcurve’,0.15, ...

’hgrad’,1.1, ...

’hcutoff’,0.001);

% Extend mesh

fem.xmesh=meshextend(fem);

% Solve problem

fem.sol=femlin(fem, ...

’solcomp’,{’Hz’}, ...

’outcomp’,{’Hz’});

% posteval returns the electric field at each point

eii_struct = posteval(fem,’10*log10(normE_wh/450)’,’dl’,[1]);

% Take the maximum field value and add it to emax

eii_max = max(eii_struct.d);

emax = [emax eii_max];

end

% Clean up all of our loose ends

save opticalData emax lambda;

75



clear;

load opticalData;

B.4 Magnetic2d.m

%{

Joseph Doll

Magnetic2d.m

2D FEMLAB 3.1 simulation to calculate the torque experienced by a

four layer au/fe/ag/au nanocrescent subjected to a magnetic field

field on the order of .1T.

%}

flclear fem

clear vrsn

vrsn.name = ’FEMLAB 3.1’;

vrsn.ext = ’’;

vrsn.major = 0;

vrsn.build = 157;

vrsn.rcs = ’$Name: $’;

vrsn.date = ’$Date: 2004/11/12 07:39:54 $’;

fem.version = vrsn;

% Width of opening aperture of the gold shell and iron core

AuOpenWidth = 70e-9;

MagOpenWidth = 72e-9;

R1 = 50e-9; % Outer arc of gold shell

R2 = 80e-9; % Outer arc of magnetic core

R3 = 75e-9; % Inner arc of magnetic core

R4 = 20e-9; % Inner arc of gold shell

x1 = 0;

y1 = 0;

x2 = 0;

y2 = -((R1-R2) + (R2*(1-cos(asin(MagOpenWidth/(2*R2))))) ...
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- (R1*(1-cos(asin(MagOpenWidth/(2*R1))))));

x3 = 0;

y3 = -((R1-R3) + (R3*(1-cos(asin(MagOpenWidth/(2*R3))))) ...

- (R1*(1-cos(asin(MagOpenWidth/(2*R1))))));

% Mass and Center of Mass Calculations:

% Densities of core and shell, kg/m^3

rhoCore = 5170;

rhoShell = 19320;

% Approx. volumes of core and shell, m^3

volumeCore = 4/3*pi*(R2^3-R3^3);

volumeShell = 4/3*pi*(R1^3-R2^3+R3^3-R4^3);

% Masses of core and shell, kg

massCore = rhoCore * volumeCore;

massShell = rhoShell * volumeShell;

% Center of mass of core

cmCore = (4/3*pi*(R2^3*y2 - R3^3*y3)*rhoCore)/massCore;

% Iron (Fe) Core

murCore = 5e3;

% Magnetization of the plate in the +y axis

magPlate = 1/(4*pi*1e-7);

fem.const = {’magPlate’,magPlate,’murCore’,murCore, ...

’cmCore’,cmCore};

torqueZ = [];

for theta = linspace(0,pi,5),

g2=ellip2(R2,R2,’base’,’center’,’pos’,[x2,y2],’rot’,’0’);
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g3=ellip2(R3,R3,’base’,’center’,’pos’,[x3,y3],’rot’,’0’);

% Define the environment bound rectangle

bound = rect2(’8e-7’,’8e-7’,’base’,’center’,’pos’, ...

{’0’,’-2e-7’},’rot’,’0’);

% Define the magnetic field plates

botPlate=rect2(’.5E-6’,’1.0E-7’,’base’,’center’,’pos’, ...

{’0’,’-180E-9’},’rot’,’0’);

% Subtraction

g6=geomcomp({g2,g3},’ns’,{’g2’,’g3’},’sf’,’g2-g3’, ...

’edge’,’none’);

% Fillets

g8=fillet(g6,’radii’,.25e-9,’point’,[3 6]); % Inner radii

nanomoon=rotate(g8,theta,[0,cmCore]);

clear s

s.objs={nanomoon,bound,botPlate};

s.name={’NM’,’BD’,’BP’};

s.tags={’nanomoon’,’bound’,’botPlate’};

fem.draw=struct(’s’,s);

fem.geom=geomcsg(fem);

% ------- Solve ---------

clear appl

appl.mode.class = ’PerpendicularCurrents’;

appl.module = ’CEM’;

appl.assignsuffix = ’_qa’;

clear prop

prop.elemdefault=’Lag1’;

appl.prop = prop;
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clear bnd

bnd.type = {’A0’};

appl.bnd = bnd;

clear equ

equ.mur = {1,0,’murCore’};

equ.magconstrel = {’mur’,’M’,’mur’};

equ.M = {{0;0},{0;’magPlate’},{0;0}};

equ.L = {1,1,150e-9};

% Name the maxwell stress tensor on the magnetic

% core surface

equ.maxwell = {{},{},’coreForce’};

equ.ind = [1,2,3];

appl.equ = equ;

fem.appl{1} = appl;

fem=multiphysics(fem);

fem.mesh=meshinit(fem, ...

’hmaxfact’,0.15, ...

’hgrad’,1.1, ...

’hcurve’,0.2, ...

’hcutoff’,0.0001);

fem.xmesh=meshextend(fem);

fem.sol=femlin(fem, ...

’solcomp’,{’Az’}, ...

’outcomp’,{’Az’});

% Integrate each infinitesimal contribution of

% the Maxwell stress tensor about the core

% center of mass along the appropriate boundaries

tZ = postint(fem,’x*coreForce_nTy_qa - ...

(y-cmCore)*coreForce_nTx_qa’,’edim’,1,’dl’,[9:18]);

torqueZ = [torqueZ tZ];

end
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B.5 Magnetic3d.m

%{

Joseph Doll

Magnetic2d.m

3D FEMLAB 3.1 simulation to calculate the torque experienced by a

magnetic core that is sandwiched between an au and ag layer in a

composite four layer nanocrescent. Magnetic core is subjected to

a magnetic field on the order of .1T.

%}

flclear fem

clear vrsn

vrsn.name = ’FEMLAB 3.1’;

vrsn.ext = ’’;

vrsn.major = 0;

vrsn.build = 157;

vrsn.rcs = ’$Name: $’;

vrsn.date = ’$Date: 2004/11/12 07:39:54 $’;

fem.version = vrsn;

% The diameter of the circular opening into the nanomoon.

% The core is embedded within the shell

ShellOpenWidth = 70e-9; % Shell is gold

CoreOpenWidth = 72e-9; % Core is iron oxide (hematite)

% Radii of the spheres that generate the nanomoon structure

R1 = 50e-9; % Outer arc of gold shell

R2 = 80e-9; % Outer arc of magnetic core

R3 = 75e-9; % Inner arc of magnetic core

R4 = 25e-9; % Inner arc of gold shell

% Density values

rhoCore = 5170; % Density of core, kg/m3

rhoShell = 19320; % Density of gold, kg/m3

% ----------------------------------------

% -------- Magnetic Parameters -----------
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% ----------------------------------------

% Magnetic permeability (relative)

murShell = .99996; % Gold shell

murCore = 5e3; % Iron Oxide (Fe2O3) Core

% Magnetization of the plate in the +z axis

magPlate = 1/(4*pi*1e-7);

% ----------------------------------------

% ----------------------------------------

% Volume calculations

volumeCore = 4/3*pi*(R2^3-R3^3); % Volume of the magnetic core

volumeShell = 4/3*pi*(R1^3-R2^3+R3^3-R4^3); % Volume of the shell

% Mass calculations

massCore = rhoCore * volumeCore; % Mass of the core

massShell = rhoShell * volumeShell; % Mass of the shell

% Calculate the vertical displacement of each ellipse based upon

% the dimensions noted above (radii and opening widths)

x1 = 0;

y1 = 0;

z1 = 0;

x2 = 0;

y2 = 0;

z2 = -((R1-R2) + (R2*(1-cos(asin(CoreOpenWidth/(2*R2))))) ...

- (R1*(1-cos(asin(CoreOpenWidth/(2*R1))))));

x3 = 0;

y3 = 0;

z3 = -((R1-R3) + (R3*(1-cos(asin(CoreOpenWidth/(2*R3))))) ...

- (R1*(1-cos(asin(CoreOpenWidth/(2*R1))))));

x4 = 0;

y4 = 0;

z4 = -((R1-R4) + (R4*(1-cos(asin(ShellOpenWidth/(2*R4))))) ...
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- (R1*(1-cos(asin(ShellOpenWidth/(2*R1))))));

% The z-component of the coordinate of the center of

% mass of the core

cmCore = (4/3*pi*(R2^3*z2 - R3^3*z3)*rhoCore)/massCore;

% Output data vectors. Initialized to be empty.

torqueX = [];

torqueY = [];

torqueZ = [];

forceZ = [];

% Rotate the geometry to each angle theta (radians) and solve

for theta = linspace(0,pi,5),

% Constants that accesible in Femlab

fem.const={’magPlate’,magPlate,’murShell’,murShell, ...

’murCore’,murCore,’cmCore’,cmCore};

% Define the ellipses based upon the calculated dimensions

%g1=sphere3(R1,’pos’,[x1,y1,z1],’axis’, ...

{’0’,’0’,’1’},’rot’,’0’);

g2=sphere3(R2,’pos’,[x2,y2,z2],’axis’, ...

{’0’,’0’,’1’},’rot’,’0’);

g3=sphere3(R3,’pos’,[x3,y3,z3],’axis’, ...

{’0’,’0’,’1’},’rot’,’0’);

%g4=sphere3(R4,’pos’,[x4,y4,z4],’axis’, ...

{’0’,’0’,’1’},’rot’,’0’);

% Define the environment bound block

Bound=block3(’1.5E-6’,’1.5E-6’,’1E-6’,’base’,’center’, ...

’pos’,{’0’,’0’,’0’},’axis’,{’0’,’0’,’1’},’rot’,’0’);

% Define the magnetic field plates

Plate=block3(’1E-6’,’1E-6’,’1E-7’,’base’,’center’, ...

’pos’,{’0’,’0’,’-2.0E-7’},’axis’,{’0’,’0’,’1’},’rot’,’0’);
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% Subtraction

%g5=geomcomp({g1,g4},’ns’,{’g1’,’g4’},’sf’, ...

’g1-g4’,’face’,’none’,’edge’,’all’);

g6=geomcomp({g2,g3},’ns’,{’g2’,’g3’},’sf’, ...

’g2-g3’,’face’,’none’,’edge’,’all’);

% Combine the geometry into a single final structure

%nanomoon1=geomcomp({g5,g6},’ns’,{’CO1’,’CO2’},’sf’, ...

’CO1+CO2’,’face’,’none’,’edge’,’all’);

% Rotate the nanocrescent through the angle theta about the y-axis

Nanomoon=rotate(g6, theta , [0,1,0] , [0,0,cmCore] );

% Designate the final components

clear s

s.objs={Nanomoon,Bound,Plate};

s.name={’NM’,’BD’,’P’};

s.tags={’Nanomoon’,’Bound’,’Plate’};

fem.draw=struct(’s’,s);

fem.geom=geomcsg(fem);

clear appl

appl.mode.class = ’MagnetostaticsNoCurrents’;

appl.module = ’CEM’;

appl.assignsuffix = ’_nc’;

clear bnd

bnd.type = {’cont’,’nB0’,’Vm0’};

bnd.murbnd = {0,1,1};

bnd.ind = [2,2,2,3,2,1,1,1,1,1,1,1,1,1,1, ...

1,1,1,1,1,1,1,1,1,1,1,1,2];

appl.bnd = bnd;

clear equ

equ.mur = {1,1,’murCore’};

equ.magconstrel = {’mur’,’M’,’mur’};
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equ.M = {{0;0;0},{0;0;’magPlate’},{0;0;0}};

equ.maxwell = {{},{},’coreForce’};

equ.ind = [1,2,3];

appl.equ = equ;

fem.appl{1} = appl;

fem.border = 1;

fem=multiphysics(fem);

fem.mesh=meshinit(fem, ...

’hmaxfact’,1.2, ...

’hcutoff’,.01, ...

’hgrad’,1.4, ...

’hcurve’,0.25); %, ...

%’hnarrow’,2, ... // Resolution in narrow regions

%’hpnt’,100, ... // Resolution of geometry

%’xscale’,5, ... // Scale factor for scale, mesh, revert process

%’yscale’,5, ...

%’zscale’,5);

% Extend mesh

fem.xmesh=meshextend(fem);

% Solve problem (Conjugate Gradients, SSOR, Symmetric Matrices)

% Suitable for large scale 3d models with symmetric matrices

fem.sol=femlin(fem, ...

’conjugate’,’off’, ...

’symmetric’,’on’, ...

’solcomp’,{’Vm’}, ...

’outcomp’,{’Vm’}, ...

’linsolver’,’cg’, ...

’prefun’,’ssor’);

% Calculate the torque and force vectors on the

% magnetic core and append them to their respective vectors.

% Torque, x component

tX=postint(fem,’y*coreForce_nTz_nc - (z-cmCore)* ...
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coreForce_nTy_nc’,’edim’, 2,’dl’,[11:26]);

torqueX = [torqueX tX];

% Torque, y component

tY=postint(fem,’(z-cmCore)*coreForce_nTx_nc - x* ...

coreForce_nTz_nc’,’edim’, 2,’dl’,[11:26]);

torqueY = [torqueY tY];

% Torque, z component

tZ=postint(fem,’x*coreForce_nTy_nc - y* ...

coreForce_nTx_nc’,’edim’, 2,’dl’,[11:26]);

torqueZ = [torqueZ tZ];

% Force, z component

fZ = posteval(fem, ’coreForce_forcez_nc’,’edim’, 0);

fZ = fZ.d(1);

forceZ = [forceZ fZ];

end

save magCoreData torqueX torqueY torqueZ forceZ;

clear

load magCoreData
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